Nuclear Chemistry Cumulative Examination January 20, 2010

The examination will focus on nuclear forces. Support all answers with brief justifications where appropriate. A periodic table is available on the wall at the front of the room.

Q1 (11 points): Copy the following table into your examination booklet, and fill in the open boxes.

Force	Range (m)	Force Carrier	Relative Strength
Strong			1
Weak			
Electromagnetic			
Gravitational			

Q2 (8 points): Which of the following statements are true?

- The strong force is attractive
- The strong force changes with nuclear charge
- The strong force is a saturating force
- The strong force acts independent of spin

Q3 (8 points): The low-energy level yrast structures for 50 Fe (Z=26) and 50 Cr (Z=24) are show below.

- Why are the level structures so similar?
- Why are the level energies slightly lower in ⁵⁰Fe?

Q4 (20 points): Sketch the nuclear potentials estimated from the one-dimensional analytical expressions listed below. Give at least one positive and one negative attribute for each expression as a useful representation of the nuclear force.

Square Well

 $V(r)=V_0$ for r<R; V=0 for r>R

• Harmonic Oscillator

 $V(r)=0.5kr^2$

Woods-Saxon

 $V(r)=-V_0/[1+exp({r-R}/a)]$

Yukawa

 $V(r)=-g^2 e^{-mr}/r$

Q5 (12 points): Use the figure below depicting the energy levels derived from the schematic shell model to answer the following questions.

- What is the degeneracy of the 1p_{3/2} orbital?
- In the shell model ¹⁶O (Z=8) is a closed shell nucleus and has spin and parity 0⁺. What are predicted values for the spin and parity of ¹⁵O and ¹⁷O?
- For even-even nuclei (e.g., ¹⁶O) the ground state spin and parity is always 0⁺. How is this observation explained?

Q6 (10 points): In a universe differing from ours only by the sign of the spin-orbit potential, what would be the magic numbers?

Q7 (10 points): Reproduce the diagram below in your exam booklet. Sketch the expected splitting of the $g_{9/2}$ shell model state as a function of β_2 in a deformed potential with axial symmetry. Label each level with its correct value of the projection of angular momentum along the symmetry axis and its degeneracy.

Q8 (10 points): Starting with the relation that density is equal to mass over volume, show that the central nuclear density is essentially independent of nuclear mass.

Q9 (10 points): What is the basis for the nuclear property dubbed isospin? Give the possible range of values of isospin (T), as well as the value of the three-axis component of isospin (T_z), for the ground state of ^{17}F (Z=9).