(R)-(-)-2,2-Diphenylcyclopentanol

(chiral auxiliary in asymmetric synthesis)

- *Physical Data:* a white solid,^{1,2,3} mp 76–77 °C; $[\alpha]_D^{20}$ 116 (*c* 0.97, EtOH).¹
- *Solubility:* soluble in most common organic solvents including acetone, DMSO, MeOH, EtOH, Et₂O, CH₂Cl₂, THF, and EtOAc.
- Analysis of Reagent Purity: by ¹H NMR and X-ray analyses¹ of its (R)- α -methoxy- α -(trifluoromethyl)phenylacetic acid [(R)-MTPA] derivative;²chiral HPLC analysis; supercritical fluid chromatography (SFC).⁴
- *Preparative Methods:* on a preparative scale (>97% ee) by borane reduction of 2,2-diphenylcyclopentanone in the presence of (*S*)-tetrahydro-1-methyl-3,3-diphenyl-1*H*,3*H*-pyrrolo[1,2-c][1,3,2] oxazaborole;^{3,4} by asymmetric reduction of 2,2-diphenylcyclopentanone with (+)-β-chlorodiisopinocampheylborane;¹ by kinetic resolution of racemic acetate derived from the alcohol.⁵

Purity: recrystallization from hexane.^{1,3,4}

General. The potential of (R)-(-)-2,2-diphenylcyclopentanol (DCP) (1) as a chiral auxiliary was first demonstrated by d'Angelo,¹ who designed and employed the alcohol in a highly diastereoselective synthesis of β -amido esters. Later, Zhang et al.⁶ were able to access diastereomerically enriched cycloalkanones via Mn(III)-based oxidative free-radical cyclizations of β -keto DCP esters. Denmark and co-workers have extensively studied the use of DCP as a chiral auxiliary on vinyl ether dienophiles employed in the Lewis-acid-promoted tandem [4+2]/dipolar [3+2]cycloadditions with nitroalkenes. DCP has expanded the utility of the tandem nitroalkene cycloadditions, especially in the application of Z-propenyl ethers and exo [4+2] cycloadditions. The effectiveness of this auxiliary is attributed to the alcohol containing a single asymmetric center (that bears a hydroxyl group) and a quaternary carbon center (bearing two phenyl groups) α to the hydroxyl group. Because one of the two geminal aromatic nuclei is necessarily gauche (synclinal) to the adjacent hydroxyl function, the appropriate special relationship exists for masking one of the π -faces in the corresponding dienophile.¹

Synthesis of Vinyl Ethers of (R)-(–)-2,2-Diphenylcyclopentanol. The preparation of DCP-derived vinyl ethers usually involves mercuric acetate-catalyzed transetherification reaction with DCP and a corresponding vinyl ether (eq 1).⁴

Synthesis of Substituted Pyrrolidines. A cycloaddition/reduction sequence between nitroalkenes and vinyl ethers derived from DCP, i.e., **2** can effect the enantioselective synthesis of substituted pyrrolidines.^{7,8} 2-Substituted 1-nitroalkenes undergo highly efficient and diastereoselective Lewis-acid-promoted [4+2] cycloaddition with DCP-derived vinyl ethers to afford cyclic nitronates **5** in high yields. Subsequent reduction with PtO₂ (7.5 mol %), under 160 psi of H₂ at room temperature for 24 h, affords the optically active 3-substituted pyrrolidines (**6**) (71–97%, both as the free base and *N*-protected derivatives), and the chiral auxiliary **1**⁸ (eq 3).

The choice of Lewis acid promoter for these reactions can change the sense of asymmetric induction.^{4,8–12} For example, tandem [4+2]/[3+2] cycloadditions (eq 4) mediated by Ti(O-*i*-Pr)₂Cl₂, followed by hydrogenolysis afforded tricyclic (–)- α -hydroxy lactam [(–)-8] in 98% ee. When mediated by methyl-aluminum-bis(2,6-diphenylphenoxide) (MAPh), the same reaction gave (+)-8 in 93% ee. Importantly, the observed selectivity is not chiral auxiliary dependent.^{4,8,9} Rather, it is attributed to a highly endo selective cycloaddition in the case of Ti compared to high exo selectivity in the case of MAPh.

Conditions A: 1. Ti(O-*i*-Pr)₂Cl₂, CH₂Cl₂, -78 °C (89%) 2. H₂, Raney Ni, MeOH (70%) Conditions B: 1. MAPh, CH₂Cl₂, -78 °C (86%)

2. H_2 , Raney Ni, MeOH (74%)

The use of DCP-derived propenyl ethers in nitroalkene [4+2] cycloaddition allows for the installation of an additional stereogenic center in the tandem cycloadducts. The methyl substituent also provides a stereochemical marker to allow for the determination of endo/exo selectivity in the [4+2] cycloaddition.⁴ DCPderived *E*-propenylvinylether (*E*-4) has been employed in the asymmetric synthesis of 3,4-disubstituted pyrrolidines.⁸ MAPhpromoted [4+2]-cycloaddition of the vinyl ether with *trans-β*nitrostyrene provided a 20:1 mixture of diastereomeric nitronates **9** in 97% yield (eq 5). Subsequent room-temperature hydrogenolysis (160 psi H₂) with catalytic PtO₂ in EtOH provided a 20:1 mixture of trans- and cis-methyl-3-phenylpyrrolidine. Following this reduction, *N*-protection afforded the diastereomerically pure trans-4-methyl-3-phenylpyrrolidine (**10**) in 84% yield and 92% ee⁸ along with **1** (94% recovery following SiO₂ chromatography).

cycloadditions; in contrast, endo selective [4+2] cycloadditions are observed when the reactions are promoted by Ti(O-*i*-Pr)₂Cl₂.⁴ MAPh-promoted cycloaddition of the *E*-propenyl ether afforded a single α -hydroxy lactam [(+)-11] derived from exclusive exo approach of the dienophile in the [4+2] cycloaddition.⁴ Reactions of the *E*-propenylether is less selective with Ti(O-*i*-Pr)₂Cl₂, affording exo and endo products in the ratio of 2.3:1.0. Although the exo diastereomer [(-)-12] was found to be highly enantiomerically enriched (96% ee), this erosion of endo/exo selectivity can be viewed as a shortcoming of DCP (1) as a chiral auxiliary.

For Z-4:

w/ LA= Ti(O-*i*-Pr)₂Cl₂: (-)-**11** (92%ee)/(-)-**12** (65%ee) (endo:exo) ~8:1 w/ LA= MAPh: (-)-**11** (38%ee)/(+)-**12** (83%ee) (endo:exo) ~1:10.

For *E*-4: w/ LA= Ti(O-*i*-Pr)₂Cl₂: (-)-11 (66%ee)/(-)-12 (96%ee) (endo:exo) 1:2.3 w/ LA= MAPh: (+)-11 (74%ee) (exclusive product).

Synthesis and Reaction of 2-(Acyloxy) and 2-(Benzoyloxy) vinyl Ethers of (R)-(–)-DCP. 2-(Acyloxy)vinyl ethers (13) of DCP⁷ have been prepared (eq 7). Allylation of 1 followed by ozonolysis with a zinc/acetic acid reductive work-up affords the corresponding chiral aldehyde. Heating this aldehyde with the appropriate anhydride and sodium salt of the carboxylic acid gives the desired 2-(acyloxy)vinyl ethers.

Synthesis of α -Hydroxy Lactams. Propenylethers of DCP have also been employed in the synthesis of α -hydroxy lactams.⁴ The *Z*- and *E*-isomers show different levels of selectivity in the presence of MAPh or Ti(O-*i*-Pr)₂Cl₂(eq 6). When promoted by MAPh, the *Z*-propenyl ether undergoes exo selective [4+2]

A more efficient route to 2-(benzoyloxy)vinyl ether $(15)^{13}$ involves (0 °C, THF) conversion of the chiral alkoxy aldehyde 14 to its silyl enol followed by *O*-acylation with benzoyl fluoride and a catalytic amount of TBAF (2 mol %) to form a separable mixture of the *Z*-vinyl ether (81%) and *E*-vinyl ethers (6%) (eq 8).

Compound **13a** exhibits high π -facial selectivity in the regioselective [4+2] cycloaddition (promoted by SnCl₄) with 2,2disubstituted aryl-1-nitroalkenes affording *N*-tosyl-4,4-disubstituted-3-hydroxypyrrolidines (**16**) in high enantiomeric excess (96%) (eq 9).⁷

DCP-based Chiral Auxiliaries in Total Synthesis. DCPbased chiral auxiliaries have proven amenable to asymmetric total synthesis, including Denmark's syntheses of of the pyrrolizidine alkaloid (-)-rosmarinecine¹⁰ and the pentahydroxy pyrrolizidine alkaloid (+)-casuarine.^{13,14} Denmark's synthesis of (+)-casuarine involves [4+2] cycloaddition of dienophile 15 with nitrobenzoate followed by [3+2] cycloaddition of the resulting nitronate 17 with a vinyl silane 18 (eq 10). During formation of the [4+2] cycloadduct, the relative configuration between C4 and C5 is a direct consequence of the vinyl ether geometry, while the stereochemistry at C6 is determined by the ability of the chiral auxiliary to differentiate the diastereotopic π faces (*Re* of Si) of the vinyl ether (termed internal diastereoselection). Thus, this tandem sequence establishes five of the six stereocenters present in the natural product. Moreover, the chiral auxiliary 1 is recovered in 99% yield after hydrogenolysis (260 psi H₂) with Raney nickel in MeOH followed by SiO₂ chromatography.

Synthesis of Chiral β -Amido Esters. The use of 1 as a chiral auxiliary in the asymmetric hydrogenation (H₂/PtO₂) of stereogenic β -acetamidocrotonates has also been reported.¹ Reaction of 1 with diketene in the presence of TEA and acetone as solvent, followed by saturation with NH₃, then Ac₂O-pyridine, and finally hydrogenation (PtO₂, 3–5 bars of H₂) afforded the β -amido esters (**22**) in high selectivity (96% de) (eq 11).

DCP as a Chiral Controller in Oxidative Free Radical Cyclizations. As a chiral auxiliary, DCP (1) is also reported to induce modest diastereoselection (60% de) in Mn(III)-based oxidative free-radical cyclizations⁶ of β -keto esters (eq 12). Chiral β -keto ester 25 was prepared by transesterification reaction with

methyl ester **23**, **1**, and 0.3 equiv of DMAP (catalyst) in anhydrous toluene at reflux for 3–5 d as described by Taber.¹⁵ Oxidative cyclization of a 0.1 M solution of **24** in AcOH with 2 equiv of $Mn(OAc)_3 \cdot 2H_2O$ and 1 equiv of $Cu(OAc)_3 \cdot H_2O^6$ provided bicyclo[3.2.1]octan-2-one (**25**).

Avoid Skin Contact with All Reagents

Related Reagents. Though not always as efficient as DCP (1), camphor derivatives (26),^{4,7,11} (–)-8-phenylmenthol (8-PhM) (27);^{1,5,6,10} (1*R*,2*S*)-2-phenylcyclohexanol (28);^{1,4,5,7–9} and *trans*-2-(1-methyl-1-phenylethyl)cyclohexanol (29)¹⁰ can also serve as chiral auxiliaries in asymmetric cycloadditions of vinyl and propenyl ethers with nitroalkenes (Figure 1). (*S*)-1 can also be used, however, this enantiomer is relatively expensive to prepare by asymmetric borane reduction.

 Pontin, D.; Dumas, F.; d'Angelo, J. N., J. Am. Chem. Soc. 1990, 112, 3483.

- Dale, J. A.; Dull, D. L.; Mosher, H. S., J. Org. Chem. 1969, 34, 2543.
- Denmark, S. E.; Marcin, L. R.; Schnute, M. E.; Thorarensen, A., Org. Syn. 1997, 74, 33.
- Denmark, S. E.; Schnute, M. E.; Marcin, L. R.; Thorarensen, A., J. Org. Chem. 1995, 60, 3205.
- Randrianasolo-Rakotozafy, L. R.; Azerad, R.; Dumas, F.; Potin, D.; d'Angelo, J., *Tetrahedron. Asym.* 1993, 4, 761.
- Zhang, W.; Mohan, R. M.; Cook, L.; Kazanis, S.; Peisach, D.; Foxman, B. M.; Snider, B. B., *J. Org. Chem.* **1993**, *58*, 7640.
- 7. Denmark, S. E.; Schnute, M. E., J. Org. Chem. 1994, 59, 4576.
- 8. Denmark, S. E.; Marcin, L. R., J. Org. Chem. 1995, 60, 3221.
- 9. Denmark, S. E.; Schnute, M. E., J. Org. Chem. 1991, 56, 6738.
- Denmark, S. E.; Thorarensen, A.; Middleton, D. S., J. Am. Chem. Soc. 1996, 118, 8266.
- 11. Denmark, S. E.; Thorarensen, A., J. Org. Chem. 1994, 59, 5672.
- 12. Denmark, S. E.; Schnute, M. E.; Senanayake, C. B. W., *J. Org. Chem.* **1993**, *58*, 1859.
- 13. Denmark, S. E.; Hurd, A. R., Org. Lett. 1999, 1, 1311.
- 14. Denmark, S. E.; Hurd, A. R., J. Org. Chem. 2000, 65, 2875.
- 15. Taber, D. F.; Amedio, J. C., Jr; Patel, Y. K., J. Org. Chem. 1985, 50, 3618.

Edith N.Onyeozili & Robert E.Maleczka Jr Michigan State University, East Lansing, MI, USA