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(R)-(–)-2,2-Diphenylcyclopentanol
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Ph

Ph

[126421-67-8] C17H18O (238.1358)
InChI = 1/C17H18O/c18-16-12-7-13-17(16,14-8-3-1-4-9-14)15-

10-5-2-6-11-15/h1-6,8-11,16,18H,7,12-13H2/t16-
/m1/s1

InChIKey = TYFASEURNPWTII-MRXNPFEDBQ

(chiral auxiliary in asymmetric synthesis)

Physical Data: a white solid,1,2,3 mp 76–77 ◦C; [α]20
D - 116

(c 0.97, EtOH).1

Solubility: soluble in most common organic solvents includ-
ing acetone, DMSO, MeOH, EtOH, Et2O, CH2Cl2, THF, and
EtOAc.

Analysis of Reagent Purity: by 1H NMR and X-ray analyses1 of
its (R)-α-methoxy-α-(trifluoromethyl)phenylacetic acid [(R)-
MTPA] derivative;2chiral HPLC analysis; supercritical fluid
chromatography (SFC).4

Preparative Methods: on a preparative scale (> 97% ee)
by borane reduction of 2,2-diphenylcyclopentanone
in the presence of (S)-tetrahydro-1-methyl-3,3-diphenyl-
1H,3H-pyrrolo[1,2-c][1,3,2] oxazaborole;3,4 by asymmetric
reduction of 2,2-diphenylcyclopentanone with (+)-β-
chlorodiisopinocampheylborane;1 by kinetic resolution of
racemic acetate derived from the alcohol.5

Purity: recrystallization from hexane.1,3,4

General. The potential of (R)-(–)-2,2-diphenylcyclopentanol
(DCP) (1) as a chiral auxiliary was first demonstrated by
d’Angelo,1 who designed and employed the alcohol in a highly
diastereoselective synthesis of β-amido esters. Later, Zhang et al.6

were able to access diastereomerically enriched cycloalkanones
via Mn(III)-based oxidative free-radical cyclizations of β-keto
DCP esters. Denmark and co-workers have extensively studied
the use of DCP as a chiral auxiliary on vinyl ether dienophiles em-
ployed in the Lewis-acid-promoted tandem [4 + 2]/dipolar [3 + 2]
cycloadditions with nitroalkenes. DCP has expanded the utility
of the tandem nitroalkene cycloadditions, especially in the appli-
cation of Z-propenyl ethers and exo [4 + 2] cycloadditions. The
effectiveness of this auxiliary is attributed to the alcohol contain-
ing a single asymmetric center (that bears a hydroxyl group) and
a quaternary carbon center (bearing two phenyl groups) α to the
hydroxyl group. Because one of the two geminal aromatic nuclei
is necessarily gauche (synclinal) to the adjacent hydroxyl func-
tion, the appropriate special relationship exists for masking one
of the π-faces in the corresponding dienophile.1

Synthesis of Vinyl Ethers of (R)-(–)-2,2-Diphenylcyclopen-
tanol. The preparation of DCP-derived vinyl ethers usually
involves mercuric acetate-catalyzed transetherification reaction
with DCP and a corresponding vinyl ether (eq 1).4
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E- and Z-Propenyl ethers (4) of DCP have been prepared by the
isomerization of the corresponding allyl ethers in the presence of
Wilkinson’s catalyst and DABCO (eq 2).4
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Synthesis of Substituted Pyrrolidines. A cycloaddition/red-
uction sequence between nitroalkenes and vinyl ethers derived
from DCP, i.e., 2 can effect the enantioselective synthesis of substi-
tuted pyrrolidines.7,8 2-Substituted 1-nitroalkenes undergo highly
efficient and diastereoselective Lewis-acid-promoted [4 + 2] cy-
cloaddition with DCP-derived vinyl ethers to afford cyclic ni-
tronates 5 in high yields. Subsequent reduction with PtO2 (7.5
mol %), under 160 psi of H2 at room temperature for 24 h, af-
fords the optically active 3-substituted pyrrolidines (6) (71–97%,
both as the free base and N-protected derivatives), and the chiral
auxiliary 18 (eq 3).
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The choice of Lewis acid promoter for these reactions can
change the sense of asymmetric induction.4,8–12 For example,
tandem [4 + 2]/ [3 + 2] cycloadditions (eq 4) mediated by Ti(O-
i-Pr)2Cl2, followed by hydrogenolysis afforded tricyclic (–)-α-
hydroxy lactam [(–)-8] in 98% ee. When mediated by methyl-
aluminum-bis(2,6-diphenylphenoxide) (MAPh), the same reac-
tion gave ( + )-8 in 93% ee. Importantly, the observed selectivity
is not chiral auxiliary dependent.4,8,9 Rather, it is attributed to a
highly endo selective cycloaddition in the case of Ti compared to
high exo selectivity in the case of MAPh.
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Conditions B:

Conditions A:1. Ti(O-i-Pr)2Cl2, CH2Cl2, −78 °C (89%)
2. H2, Raney Ni, MeOH (70%)

1. MAPh, CH2Cl2, −78 °C (86%)
2. H2, Raney Ni, MeOH (74%)
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The use of DCP-derived propenyl ethers in nitroalkene [4 + 2]
cycloaddition allows for the installation of an additional stere-
ogenic center in the tandem cycloadducts. The methyl substituent
also provides a stereochemical marker to allow for the determina-
tion of endo/exo selectivity in the [4 + 2] cycloaddition.4 DCP-
derived E-propenylvinylether (E-4) has been employed in the
asymmetric synthesis of 3,4-disubstituted pyrrolidines.8 MAPh-
promoted [4 + 2]-cycloaddition of the vinyl ether with trans-β-
nitrostyrene provided a 20:1 mixture of diastereomeric nitronates
9 in 97% yield (eq 5). Subsequent room-temperature hydrogenol-
ysis (160 psi H2) with catalytic PtO2 in EtOH provided a 20:1
mixture of trans- and cis-methyl-3-phenylpyrrolidine. Following
this reduction, N-protection afforded the diastereomerically pure
trans-4-methyl-3-phenylpyrrolidine (10) in 84% yield and 92%
ee8 along with 1 (94% recovery following SiO2 chromatography).
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Synthesis of α-Hydroxy Lactams. Propenylethers of DCP
have also been employed in the synthesis of α-hydroxy lactams.4

The Z- and E-isomers show different levels of selectivity in
the presence of MAPh or Ti(O-i-Pr)2Cl2(eq 6). When promoted
by MAPh, the Z-propenyl ether undergoes exo selective [4 + 2]

cycloadditions; in contrast, endo selective [4 + 2] cycloadditions
are observed when the reactions are promoted by Ti(O-i-Pr)2Cl2.4

MAPh-promoted cycloaddition of the E-propenyl ether afforded
a single α-hydroxy lactam [( + )-11] derived from exclusive exo
approach of the dienophile in the [4 + 2] cycloaddition.4 Reac-
tions of the E-propenylether is less selective with Ti(O-i-Pr)2Cl2,
affording exo and endo products in the ratio of 2.3:1.0. Although
the exo diastereomer [( − )-12] was found to be highly enantiomer-
ically enriched (96% ee), this erosion of endo/exo selectivity can
be viewed as a shortcoming of DCP (1) as a chiral auxiliary.
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For Z-4:
w/ LA= Ti(O-i-Pr)2Cl2: (–)-11 (92%ee)/(–)-12 (65%ee) (endo:exo) ~8:1
w/ LA= MAPh: (–)-11 (38%ee)/(+)-12 (83%ee) (endo:exo) ~1:10.

For E-4:
w/ LA= Ti(O-i-Pr)2Cl2: (–)-11 (66%ee)/(–)-12 (96%ee) (endo:exo) 1:2.3
w/ LA= MAPh: (+)-11 (74%ee) (exclusive product).

1. 7, Lewis acid (LA)
    CH2Cl2, −78 °C

Synthesis and Reaction of 2-(Acyloxy) and 2-(Benzoyloxy)
vinyl Ethers of (R)-(–)-DCP. 2-(Acyloxy)vinyl ethers (13) of
DCP7 have been prepared (eq 7). Allylation of 1 followed by
ozonolysis with a zinc/acetic acid reductive work-up affords the
corresponding chiral aldehyde. Heating this aldehyde with the
appropriate anhydride and sodium salt of the carboxylic acid gives
the desired 2-(acyloxy)vinyl ethers.
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3
13a, R = Me (80%)
13b, R = t-Bu (39%)

(7)

1. O3, CH2Cl2, −78 °C
2. Zn, HOAc (74%)

A more efficient route to 2-(benzoyloxy)vinyl ether (15)13 in-
volves (0 ◦C, THF) conversion of the chiral alkoxy aldehyde 14 to
its silyl enol followed by O-acylation with benzoyl fluoride and a
catalytic amount of TBAF (2 mol %) to form a separable mixture
of the Z-vinyl ether (81%) and E-vinyl ethers (6%) (eq 8).

A list of General Abbreviations appears on the front Endpapers



(R)-(–)-2,2-DIPHENYLCYCLOPENTANOL 3

Ph

O

CHO

Ph
Ph

O
Ph O

O

Ph
2. BzF (1.9 equiv)
    TBAF (0.02 equiv)
    THF, 0 °C, 2 h
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15
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1. TMSCl, Et3N
     MeCN, 81 °C

Compound 13a exhibits high π-facial selectivity in the re-
gioselective [4 + 2] cycloaddition (promoted by SnCl4) with 2,2-
disubstituted aryl-1-nitroalkenes affording N-tosyl-4,4-disubsti-
tuted-3-hydroxypyrrolidines (16) in high enantiomeric excess
(96%) (eq 9).7
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DCP-based Chiral Auxiliaries in Total Synthesis. DCP-
based chiral auxiliaries have proven amenable to asymmet-
ric total synthesis, including Denmark’s syntheses of of the
pyrrolizidine alkaloid (–)-rosmarinecine10 and the pentahydroxy
pyrrolizidine alkaloid ( + )-casuarine.13,14 Denmark’s synthesis of
(+)-casuarine involves [4 + 2] cycloaddition of dienophile 15 with
nitrobenzoate followed by [3 + 2] cycloaddition of the resulting
nitronate 17 with a vinyl silane 18 (eq 10). During formation of
the [4 + 2] cycloadduct, the relative configuration between C4 and
C5 is a direct consequence of the vinyl ether geometry, while the
stereochemistry at C6 is determined by the ability of the chiral
auxiliary to differentiate the diastereotopic π faces (Re of Si) of
the vinyl ether (termed internal diastereoselection). Thus, this tan-
dem sequence establishes five of the six stereocenters present in
the natural product. Moreover, the chiral auxiliary 1 is recovered
in 99% yield after hydrogenolysis (260 psi H2) with Raney nickel
in MeOH followed by SiO2 chromatography.

Synthesis of Chiral β-Amido Esters. The use of 1 as a chiral
auxiliary in the asymmetric hydrogenation (H2/PtO2) of stere-
ogenic β-acetamidocrotonates has also been reported.1 Reaction
of 1 with diketene in the presence of TEA and acetone as solvent,
followed by saturation with NH3, then Ac2O-pyridine, and finally
hydrogenation (PtO2, 3–5 bars of H2) afforded the β-amido esters
(22) in high selectivity (96% de) (eq 11).

DCP as a Chiral Controller in Oxidative Free Radical
Cyclizations. As a chiral auxiliary, DCP (1) is also reported to
induce modest diastereoselection (60% de) in Mn(III)-based ox-
idative free-radical cyclizations6 of β-keto esters (eq 12). Chiral
β-keto ester 25 was prepared by transesterification reaction with

methyl ester 23, 1, and 0.3 equiv of DMAP (catalyst) in anhy-
drous toluene at reflux for 3–5 d as described by Taber.15 Oxida-
tive cyclization of a 0.1 M solution of 24 in AcOH with 2 equiv
of Mn(OAc)3·2H2O and 1 equiv of Cu(OAc)3·H2O6 provided
bicyclo[3.2.1]octan-2-one (25).
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Related Reagents. Though not always as efficient as
DCP (1), camphor derivatives (26),4,7,11 (–)-8-phenyl-
menthol (8-PhM) (27);1,5,6,10 (1R,2S)-2-phenylcyclohexanol
(28);1,4,5,7–9 and trans-2-(1-methyl-1-phenylethyl)cyclohexanol
(29)10 can also serve as chiral auxiliaries in asymmetric cycload-
ditions of vinyl and propenyl ethers with nitroalkenes (Figure 1).
(S)-1 can also be used, however, this enantiomer is relatively
expensive to prepare by asymmetric borane reduction.
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