Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Tetrahedron Letters 50 (2009) 4407-4410

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Reactions of vinyltributylgermanes and aryl halides under Heck conditions

cially oxygen, impact regio- and stereoselectivity.

Nicole M. Torres, Jérôme M. Lavis, Robert E. Maleczka Jr.*

Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA

ARTICLE INFO

ABSTRACT

Article history: Received 16 March 2009 Revised 30 April 2009 Accepted 12 May 2009 Available online 19 May 2009

Keywords: Vinylgermanes Palladium Cross-coupling Heck reaction

In 1990, Ikenaga and Kikukawa announced the palladium-catalyzed aryldegermylation of styryltrimethylgermanes upon reaction with arenediazonium tetrafluoroborates.¹ Six years later, Kosugi reported that while the Pd-mediated coupling of vinyltributylgermane with *p*-bromotoluene afforded *p*-methylstyrene in 60% yield, most reactions of this type did not give cross-coupled products.² Chemists awaiting further descriptions of vinylgermane cross-couplings had to wait until 2002 when Oshima showed that aryltri(2furyl)germanes can be instrumental in Pd-catalyzed biaryl syntheses³ and Faller expanded the scope and utility of germatranes.⁴ More recently, tris(trimethylsilyl)vinylgermanes have found their place as efficient coupling partners upon the basic-oxidative treatment described by Wnuk.⁵ Kosugi and Fugami continue to develop germanium coupling chemistry demonstrating that aryl trichlorogermanes,⁶ or the hydrolyzed sesquioxide variants,⁷ can partake in biaryl couplings in aqueous media. Likewise, Spivey's progress on polymer- or fluorous-tagged germane couplings that are activated by photooxidation opens the door for organogermane use in library synthesis.⁸ Prompted by these continuing efforts as well as by new advances in germane syntheses,⁹ we decided to communicate our own results on the Pd-mediated reactions of vinvltributvlgermanes.

(*E*)-Vinyltributylgermanes used in this study were synthesized by Pd-mediated hydrogermylation of various alkynes.¹⁰ As illustrated in Table 1, the level of regioselectivity exhibited by these reactions was dependent on the extent of substitution at the propargylic position of the starting alkyne. Unhindered alkynes (entries 4–8) gave intrusive amounts of internal (proximal) vinyltributylgermanes. Table 1

Hydro	germylations 3 mol % Pd(PPh ₃) ₄ ,			
	HR	• $Bu_3Ge \sim R$	+ ^{Bu₃Ge}	R
Entry	Alkyne	Product	% Yield	E/int ^a
1	2-Methyl-3-butyn-2-ol	1a	95	100% E
2	1-Ethynyl-cyclohexanol	1b	89	100% E
3	3-Methyl-1-butyne	1c	73	100% E
4	Hex-1-yn-6-ol	1d	64	4.0/1
5	Pent-1-yn-5-ol	1e	75	3.8/1
6	1-Pentyne	1f	78	3.6/1
7 ^b	Propargyl alcohol	1g	81	1.7/1
8	O-THP hex-1-yn-6-ol	1i	62	1.3/1
9	O-TBS 2-methyl-3-butyn-2-ol	1j	91	100% E

^a Yields and *E*/internal ratios based on isolated material.

We describe the palladium-mediated reaction of vinyltributylgermanes with aryl halides under Heck

conditions. Depending on their degree of substitution, (E)-vinvltributylgermanes preferentially afford

either the cine or Z-alkenyl coupled products in moderate yields. Substituents at the allylic position, espe-

 $^{\rm b}$ Reaction time 14.5 h; *E*/internal ratio determined by $^1{\rm H}$ NMR analysis of the crude reaction mixture.

Initial cross-coupling experiments under traditional Stille conditions proved interesting in that (*E*)-vinyltributylgermane **1a** solely gave *Z*-product **2**, albeit in a modest 30% yield (Scheme 1). This selective formation of a *Z*-product from an (*E*)-germane was a distinctive feature of our system and therefore worthy of additional study.

We surveyed various reaction conditions with the aim of improving our understanding and efficiency of the process. Focusing first on Stille-type conditions,¹¹ we examined different Pd (Pd₂dba₃, Pd(OAc)₂, and PdCl₂[P(*o*-Tol)₃]₂), and ligand (AsPh₃, TFP, (*o*-Tol)₃P, and dppe) mixtures. No catalyst–ligand combinations

© 2009 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 517 355 9715x124; fax: +1 517 353 1793. *E-mail address*: maleczka@chemistry.msu.edu (R.E. Maleczka Jr.).

^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.05.035

N. M. Torres et al./Tetrahedron Letters 50 (2009) 4407-4410

Scheme 1. Initial coupling reaction.

that were studied improved the Scheme 1 results. Furthermore, while repeating the reaction described above in the presence of Cul the reaction failed, providing evidence against a Stille-type mechanism.

Faller previously suggested a Heck reaction as one possible contributor in the coupling of alkenylgermatranes.^{4a,12} We too recognized that formation of (*Z*)-**2** could be explained by a Heck-type mechanism^{11,13} involving *syn* β -germyl elimination of the palladium intermediate (Scheme 2). Therefore, we quickly moved to investigate Heck-type catalytic systems.^{11,13}

An exploration of Heck-type conditions soon identified $Pd(OAc)_2$ and Ph_3P as a suitable catalyst and ligand, respectively. Experimentation with additives, bases, ¹⁴ and solvents¹⁵ (Table 2) revealed that Bu_4NBr and K_2CO_3 in acetonitrile/water were optimal.¹⁶ A reaction temperature of ~70 °C proved best. Couplings tended not to occur at temperatures <50 °C, whereas reactions at much higher than 70 °C gave lower yields, most likely due to catalyst decomposition. After screening catalyst loadings (entries 1 and 7–9) we decided that 20 mol % Pd struck the best balance between stoichiometry and yield. Furthermore, 17–18% biaryl was observed with PhI.¹⁷ Thus the choice Heck conditions to emerge were

Scheme 2. Proposed mechanism.

Table 2

Ligand, additive, base, and solvent screening for the reaction of $\mathbf{1a}$ under Heck conditions

	Bu ₃ Ge	\rightarrow OH $\frac{2}{2}$	(OAc) ₂ , PPI 1 equiv A .5 equiv Bas equiv PhI,	h ₃ (Pd/L 1:2) Additive, se, Solvent, 60 °C, 16 h	Ph 2	OH + 1a
Entry	Mol % Pd	Additive	Base	Solvent	% 1a ^a	% Yield ^a (Z/E/int)
1	10	Bu ₄ NBr	K ₂ CO ₃	aq MeCN ^b	53	47 (17/4/1)
2	10	Bu ₄ NHSO ₄	K ₂ CO ₃	aq MeCN ^b	21	34
3	10	_	K ₂ CO ₃	aq MeCN ^b	66	34 (21/1/5)
4	10	Bu ₄ NBr	NaHCO ₃	aq MeCN ^b	57	43 (17/1/2)
5	10	Bu ₄ NBr	NaHCO ₃	DMF	80	6
6	10	Bu ₄ NBr	Ag_2CO_3	aq MeCN ^b	65	30
7	5	Bu₄NBr	K ₂ CO ₃	aq MeCN ^b	54	46 (17/5/1)
8	20	Bu₄NBr	K ₂ CO ₃	aq MeCN ^b	45	55 (10/3/1)
9	50	Bu ₄ NBr	K ₂ CO ₃	aq MeCN ^b	63	37 (4/1/0)

^a Yields of **2** and unreacted **1a** as well as Z/E/internal ratios were determined by ¹H NMR analysis of crude reactions with MeOH, mesitylene, or TMS-O-TMS as an internal standard.

^b MeCN/H₂O (9:1).

2 equiv electrophile, 20 mol % Pd(OAc)₂, 40 mol % PPh₃,¹⁸ 1 equiv Bu₄NBr, and 2.5 equiv K₂CO₃ in MeCN/H₂O (9:1) at 70 °C.

Although the Heck conditions appeared superior to the Stille conditions shown in Scheme 1, we thought it prudent to compare Stille and Heck conditions across a set of common electrophiles and similar reaction parameters. The results are given in Table 3. Even though Stille protocols were competitive for some substrates, Heck conditions generally gave better yields in less reaction time.

Convinced that the Heck conditions were best, three (*E*)-vinyl-tributylgermanes fully substituted at the allylic carbon (1a-c) were reacted with various electrophiles using the conditions given in entry 8 of Table 2. Here, all reactions were stopped at 16 h so as to allow direct comparisons across entries. The results are given in Table 4.¹⁹

Product yields ranged from poor to moderate, but again the *Z*-products were favored. Electron-poor arenes tended to give higher yields, but lower *Z*/*E* selectivity. Activated arenes tended to give more of the *E*-product (entries 5–7) suggesting an admixture of mechanistic pathways. Ortho-substituted arenes (entries 8 and 9) were non-reactive, suggesting a strong steric influence. Interestingly, the lack of an oxygen at the allylic carbon of the vinyltributylgermane was problematic (entry 11) (vide infra). Lastly, (*Z*)-ICH=CHCO₂Me and (*E*)-ICH=CH(CH₂)₆CO₂Me did not couple (not shown).

It was also noted that Z/E product ratios were concentration dependent. As Table 5 shows, increased reaction concentrations met with decreased Z/E ratios, but with relatively steady yields. For Heck-type reactions, elimination is proposed to be rate determining,²⁰ and should therefore be independent of concentration. However, the rate-determining transmetallation step of a Stille-

Table 3

Comparison of Heck and Stille conditions

Entry	Ar-X	% Yield (Stille A) ^a	% Yield (Stille B) ^b	% Yield (Heck) ^c
1	PhI	30	25	47
2	PhBr	28	28	26
3	1-Bromo-4-nitrobenzene	10	0	48

 a Conditions A: 20 mol % $Pd_2dba_3,\,80$ mol % AsPh_3, $\textbf{1a},\,2$ equiv ArX, NMP, 70 °C, 48 h.

^b Conditions B: Same as conditions A using Pd(OAc)₂ instead of Pd₂dba₃.

^c Heck conditions: 20 mol % Pd(OAc)₂, 40 mol % PPh₃, **1a**, 2 equiv ArX, 1 equiv K₂CO₃, 1 equiv Bu₄NBr, MeCN/H₂O (9:1), 70 °C, 16 h.

Table 4

Reactions of vinyltributylgermanes (1a-c) with halides

	R C R	2 equiv Ar-X, 20 mol % Pd(OAc) ₂ , 40 mol %	% PPh ₃ ,	Ar, R	
	Bu₃Ge ❤ 1aŠc	1 equiv Bu ₄ NBr, 2.5 equiv F MeCN/H ₂ O (9:1), ~0.05 M, 70	2^{CO_3} , 2^{S11}		
Entry	Germane	Halide	% Yield	(2–11)	Z/E^{a}
1	1a	Bromobenzene	26 (2)		>20/1
2	1a	Iodobenzene	47 (2)		>20/1
3	1a	4-Iodotoluene	47 (3)		>20/1
4	1a	4-Bromoanisole	27 (4)		>20/1
5	1a	4-Bromoacetophenone	61 (5)		4.7/1
6	1a	Methyl 4-bromobenzoate	68 (6)		5/1
7	1a	1-Bromo-4-nitrobenzene	48 (7)		2.4/1
8	1a	2-Bromotoluene	0 (8)		_
9	1a	2-Bromoacetophenone	0 (9)		_
10	1b	4-Bromoacetophenone	61 (10)		>20/1
11	1c	4-Bromoacetophenone	0 (11)		-

^a Yields and Z/E ratios based on isolated material.

4408

N. M. Torres et al. / Tetrahedron Letters 50 (2009) 4407-4410

Table 5 Concentration impact on Z/E ratios^a

	1	,			
Entry	Molarity	% Yield 2	Z % Yield	E % Yield	Z/E
1	0.1	29	27	2	13.5/1
2	0.168	26	21	5	4.2/1
3	0.2	23	17	6	2.8/1

Reaction conditions from Table 4 entry 1, with the solvent adjusted to obtain the indicated molarity.

type reaction should be affected by vinyltributylgermane concentration. Thus the data suggest that the Stille pathway becomes kinetically competitive at higher molarities.

Next, we reacted vinyltributylgermanes that were not fully substituted at the allylic position. Within the context of our putative Heck mechanism, two carbons possessing β-hydrogens flank the Pd-intermediate formed upon addition across the olefin of such substrates. In theory this would allow us to probe any competition between Pd-Ge and Pd-H eliminations. The results are given in Table 6.

Interestingly, (E)-1g gave exclusively the cine (internal) product, albeit in only 15% yield. Regioisomeric mixtures of 1e, 1d, and 1i each afforded mixtures of E-, Z-, and cine-products, with the cine products formed in yields exceeding the amounts of starting internal germane. Notably, submitting the starting material to the reaction conditions without the aryl bromide did not change the *E*/internal ratio. All these data suggest that (*E*)-vinyltributylgermanes unhindered at the allylic position give rise to cine substitution. This conclusion, in combination with low Z-product yields and no indication of Pd-H elimination, indicates the involvement of non-Heck pathways.

Lastly, we sought to test the stereospecificity of these reactions. To do so, we synthesized the Z-isomers of **1a** and **1j** by hydroboration of the corresponding germylalkynes followed by deborylation with acetic acid (Scheme 3).²¹

(Z)-Vinyltributylgermanes, so prepared, were reacted with Ph-I under our now standard conditions. Compound (Z)-1a coupled to a larger extent than (E)-1a (Table 7, entries 1 and 2) after 6 h, and with a much different level of stereoselectivity. (E)-1a required 16 h to achieve similar product yield. The dissimilar results between (E)- and (Z)-1a did not appear to be the consequence of starting material or product isomerization. Geometrically pure (*E*)-2 was inert when resubjected to the reaction conditions. Similarly, subjecting (Z)-1b to the reaction con-

Table 6

Reactions of unhinder	red vinyltributylgerma	nes		
	2 equiv Halide,			
	20 mol % Pd(OAc) ₂ ,			
л	40 mol % PPh3,	Ar R	. P	
Bu ₃ Ge		► ``_/``	+Ar × K	$+Ar \land R$
1	1 equiv Bu ₄ NBr,	(Z)	(E)	int
-	2.5 equiv K ₂ CO ₃ ,			
	MeCN/H ₂ O (9:1),			
	~0.05 M, 70 °C, 16 h			

Entry	Germane	Halide	% Yield	Z/E/int
1	1g	4-Bromoacetophenone	15 (12)	100% int
3	1e ^a	4-Bromoacetophenone	49 (13)	4/1/20
4	1d ^a	Iodobenzene	35 (14)	5/1/19
5	1d ^a	4-Bromoacetophenone	49 (15)	3/1/20
6	1i ^b	4-Bromoacetophenone	39 ^c (16)	2.1/1/7.1
7	1i ^d	4-Bromoacetophenone	37 ^c (16)	1.1/1/4.20

^a Starting *E*/internal ratio of 4/1.

^b Starting *E*/internal ratio of 10/1.

Determined by ¹H NMR analysis of the crude reaction using anisole as an internal standard.

Starting E/internal ratio 4.3/1.

Scheme 3. Synthesis of (Z)-1a and (Z)-1j.

Table 7

Effect of vinvltributylgermane geometry^a

	Bu ₃ GeOR	2 20 mol % Pd(0	equiv PhI DAc) ₂ , 40 mol %	PPh ₃ , Ph	OR
	1a R = H 1j R = TBS	1 equiv Bu ₄ N MeCN/H ₂	Br, 2.5 equiv K ₂ O (9:1), 70 °C, 6	$2CO_3$, 2 R = H 19 R = T	BS
Entry	Germane	% Yield	Z % Yield	E % Yield	Z/E
1	(Z)-1a	45 (2)	19	26	0.73/1
2	(E)- 1a	35 (2)	31	4	8.8/1
3	(Z)- 1j	Traces (19)	Traces	Not detected	Z only

Yields and Z/E ratios determined by ¹H NMR analysis of the crude reaction using mesitylene as an internal standard.

ditions in the absence of an electrophile only led (after 10 h) to the destruction of the germane and small amounts of phenyl-coupled products (both E and Z), presumably from reaction with Ph₃P.²² Slow addition of the germane gave the same results as when the germane was added in a single portion; providing further evidence against isomerization of the starting germane. The increased reactivity of the Z-germane is in keeping with Faller's finding that O-chelated germatranes are more reactive than C-chelated ones.^{4a} We suggest that our system is undergoing a similar activation in which electron donation of the oxygen increases the reactivity of the germanium.²³ To this end, we synthesized the TBS ether (Z)-1j (Scheme 3) in order to shut down any chelation by the oxygen. When this substrate was subjected to our Heck conditions, only trace amounts of Z-product were observed by ¹H NMR analysis of the crude mixture after 6 and 24 h, supporting our hypothesis that oxygen activates the Stille pathway via germanium chelation.

In summary, vinyltributylgermanes react with aryl halides under Heck-type conditions. Depending on their degree of substitution, (E)-vinyltributylgermanes preferentially afford either the (Z)-alkenyl or cine products in moderate yields. Reaction concentration is among the factors that can affect the observed selectivities, suggesting an admixture of mechanistic pathways is operative. Efforts aimed at better defining those pathways and developing synthetically useful protocols that take full advantage of the intriguing and complementary nature of these reactions are ongoing.

Acknowledgment

We thank the NSF (CHE-9984644) for generous support.

References and notes

- Ikenaga, K.; Matsumoto, S.; Kikukawa, K.; Matsuda, T. Chem. Lett. 1990, 185-1. 188
- Kosugi, M.; Tanji, T.; Tanaka, Y.; Yoshida, A.; Fugami, K.; Kameyama, M.; Migita, 2. T. J. Organomet. Chem. 1996, 508, 255-257.

4409

Author's personal copy

4410

N. M. Torres et al. / Tetrahedron Letters 50 (2009) 4407-4410

- 3. (a) Nakamura, T.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2002, 4, 3165-3167; (b) Yorimitsu, H.; Oshima, K. Inorg. Chem. Commun. 2005, 8, 131-142.
- (a) Faller, J. W.; Kultyshev, R. G. Organometallics 2002, 21, 5911-5918; (b) 4. Faller, J. W.; Kultyshev, R. G.; Parr, J. Tetrahedron Lett. 2003, 44, 451-453.
- (a) Wnuk, S. F.; Garcia, P. I., Jr.; Wang, Z. Org. Lett. **2004**, 6, 2047–2049; (b) Wang, Z.; Wnuk, S. F. J. Org. Chem. **2005**, 70, 3281–3284; (c) Wang, Z.; Gonzalez, A.; Wnuk, S. F. Tetrahedron Lett. **2005**, 46, 5313–5316. 5.
- 6. Enokido, T.; Fugami, K.; Endo, M.; Kameyama, M.; Kosugi, M. Adv. Synth. Catal. 2004, 346, 1685-1688.
- Endo, M.; Fugami, K.; Enokido, T.; Sano, H.; Kosugi, M. Adv. Synth. Catal. 2007, 7. 349, 1025-1027.
- 8. Spivey, A. C.; Gripton, C. J. G.; Hannah, J. P.; Tseng, C.-C.; de Fraine, P.; Parr, N. J.; Scicinski, J. J. Appl. Organomet. Chem. **2007**, 21, 572–589. (a) Marciniec, B.; Lawicka, H.; Majchrzak, M.; Kubicki, M.; Kownacki, I. Chem.
- 9 (a) Marchine, D., Lawicka, H., Majenzak, M., Rubicki, M., Robieki, H., Robieki, F. Chen, Eur. J. 2006, 12, 244–250; (b) Marcinice, B.; Lawicka, H.; Dudziec, B. J. Organomet. Chem. 2008, 693, 235–240.
- Ichinose, Y.; Oda, H.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1987, 60, 10. 3468-3470.
- 11. Mitchell, T. N. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: New York, 1998; pp 167–202.
 Faller and Kultyshev pointed out (Ref. 4a) the difficulty in assessing the extent
- to which, or even if, a Heck mechanism is operating during their chemistry. Under their conditions reaction of (E)- β -phenylethenylgermatrane with piodotoluene afforded the corresponding E-stilbene, whereas a 3.5/1 mixture of (Z/E)- β -phenylethenylgermatrane gave a 2.6/1 Z/E-mixture.
- For reviews on the Heck reaction see: (a) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. **1995**, 33, 2379–2411; (b) Beletskaya, I. P.; Cheprakov, A. V. 13. Chem. Rev. 2000, 100, 3009-3066.

- 14. Et₃N, TlOEt, KOH, K₂PO₄, and CsF failed to afford 2.
- 15. Anhydrous MeCN and dioxane failed to afford 2.
- These conditions are similar to the Heck conditions first described by Jefferey. 16. See: (a) Jeffery, T. Tetrahedron Lett. 1994, 35, 3051-3054; (b) Jeffery, T. Tetrahedron 1996, 52, 10113-10130.
- Biaryl formation tracks with electrophile activation. For example, PhBr gave 1-17. 2% biaryl, while biaryl production with 1-bromo-4-nitrobenzene exceeded 20%.
- 18. Increasing the $Ph_3P/Pd(OAc)_2$ ratio inhibited the reaction.
- Representative experimental: Bu₄NBr (0.1 mmol) and K₂CO₃ (0.3 mmol) were 19. stirred in a mixture of MeCN/H2O (2 mL, 9:1) for 15 min. The vinyltributylgermane (0.1 mmol), PPh3 (0.04 mmol), and halide (0.2 mmol) were added and the reaction mixture was stirred for 15 min. $Pd(OAc)_2$ (0.02 mmol) was added and the reaction mixture was aged at 70 °C for 16 h. The mixture was cooled to rt, quenched with satd NH_4CI , and extracted with Et₂O. The organics were washed with water and brine, dried over MgSO₄, filtered, and concentrated in vacuo. The product was purified by column chromatography on silica gel.
- 20. Shmidt, A. F.; Smirnov, V. V. Kinet. Catal. 2001, 42, 800-804.
- Huang, X.; Liang, C.-G. Synth. Commun. 2000, 30, 1903–1909.
 (a) Crisp, G. T.; Glink, P. T. Tetrahedron 1994, 50, 3213–3234; (b) Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J. Org. Chem. 1995, 60, 12–13.
- 23. Possible activation of the germanium by oxygen chelation:

