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Phenols serve as synthetic building blocks for the construction
of compounds ranging from polymers to pharmaceuticals.1 Despite
numerous phenol syntheses,2,3 straightforward routes to 3,5-
disubstituted phenols bearing ortho-/para- directing groups are
lacking.4 Traditional approaches to such phenols are obstructed by
the fact that electronic effects typically govern regioselectivities in
aromatic substitution chemistry. Thus, the 5-position in 1,3-
disubstituted benzenes is notoriously inert when the substituents
are ortho/para directors. Illustrative of this problem is 3-bromo-5-
chlorophenol (1). To the best of our knowledge,5 the only two
descriptions of this potentially useful6 and versatile molecule date
back to 1926,7 including a synthesis by Hodgson and Wignall7a

that requires 10 steps starting from TNT!
Transition metal catalyzed C-H activations potentially offer

general solutions to this dilemma since steric effects often dictate
the regioselectivity of arene activation. Indeed, sterics dominate
the regioselectivities for catalytic aromatic C-H activation/bory-
lations,8 which effectively impart the chemical versatility of
arylboronic acids and esters to aromatic C-H bonds. Moreover,
we recently demonstrated that the functional group tolerance and
selectivity of Ir catalysts enable the combination of such aromatic
borylations with subsequent chemical events.8a Since it is known
that Oxone can oxidize arylboronic esters to phenols,9 we hypoth-
esized that a one-pot aromatic C-H activation/borylation/oxidation
protocol (Scheme 1) would constitute the most direct route to
numerous structurally simple phenols whose practical use is
currently limited by their accessibility.

Iridium phosphine complexes catalyze the conversion of neat
mixtures of arenes and pinacolborane (H-BPin) to arylboronic
esters, where the arene is the limiting reagent.8a Thus, we first
attempted oxidation of arylboronic esters in crude reaction mixtures
with Oxone using the literature protocol (Oxone, base, buffer, in
10-15% aqueous acetone at 2°C).9 These attempts gave irrepro-
ducible yields. Surprisingly, a 1:1 acetone-water solution of Oxone,
where the base and buffer were omitted, gave good to excellent
yields at room temperature.10

Our typical protocol11 (Scheme 2) consists of heating an
H-BPin/arene mixture (H-BPin:arene≈ 1.5-2.5:1) with (Ind)-
Ir(COD) (0.02 equiv vs arene) and 0.02 equiv 1,2-bis(dimeth-
ylphosphino)ethane (dmpe) at 150°C (or 1,2-bis(diphenylphosphino)-
ethane (dppe) at 100°C)8a until the borylation is complete by GC-
FID. After the reaction mixture has cooled to room temperature,
acetone and an aqueous solution of Oxone are added sequentially.
Within 10 minutes stirring at room temperature the oxidation is
usually complete, typically affording the phenol as the only aromatic
product. As shown in Scheme 2, 3-bromo-5-chlorophenol (1) was
prepared in 83% yield from commercially available 3-bromochlo-
robenzene. In contrast to the arduous route from TNT, our sequence
can be completed in a single flask over the course of an afternoon.

Table 1 summarizes syntheses of various other phenols using
this protocol. As previously noted,8 electron-donating substituents
retard aromatic borylations, but subsequent oxidations of the
resulting arylboronic esters and the isolated yields of the corre-
sponding phenols were not visibly perturbed by electronic effects.
That said, for electron-poor phenols, complete removal of hydrogen-
bond accepting solvents such as acetone or ether required distillation
or sublimation.11 Improvements over published routes were realized
for most of the known phenols in Table 1.11 Moreover, preparations
of phenols7 and 14-17 are described here for the first time.5

Perhaps most noteworthy, aromatic borylation/oxidation appears
to be the first unified approach to1-18.

Over-oxidation12 was not a problem, as quinones were not
observed. Even for substrates bearing oxidizable nitrogens, such
as the pyridine of entry 5 and the amino group of entry 16, no
N-oxides were detected in the isolated products.13 Ethers and esters
could survive the transformation (entries 3-4), but demethylation
of 2,6-dichloroanisole (entry 8) accompanied borylation.14 The small
van der Waals radius of fluoride makes possible the preparation of
5-bromo-2-fluorophenol (13). Furthermore, multiple hydroxyls can
be installed by adjusting the amounts of H-BPin and Oxone (entries
13-14).

Borylations can also be performed in inert solvents such as
cyclohexane (entries 5, 9-11, 13-15), which is then removed prior
to the oxidation step. The oxidation step can be performed in other
water-miscible solvents such as acetonitrile, DMF, dioxane, THF,
or diglyme. Thus, while acetone remains our solvent of choice for
the oxidation step, dimethyldioxirane is not a required intermedi-
ate.15 Oxidations in CHCl3 or CH2Cl2 failed.16

While bromide and chloride tolerance was universal, partial
deiodination of 1-bromo-3-iodobenzene occurred during borylation
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with (Ind)Ir(COD). This could be avoided by using Ishiyama and
Miyaura’s [Ir(OMe)(COD)]2-dtbpy system to borylate with B2Pin2

at room temperature (Scheme 3).17

In summary, one-pot aromatic borylation/oxidation is an efficient
protocol for preparing phenols. This method is particularly attractive
for the generation of meta-substituted phenols bearing ortho-/para-
directing groups, as such substrates are often difficult to access by
other means.
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Table 1. Phenols via One-Pot C-H
Activation/Borylation/Oxidationa

a Typical conditions: Arene, H-BPin, 2 mol % (Ind)Ir(COD), 2 mol %
dmpe, neat under N2; then acetone, 1 equiv (per boron) aqueous Oxone, 25
°C, 7 min (see SI for details).b Borylation time can be H-BPin batch
dependent.c Average isolated yields of two runs.d The borylation was
described in ref 8a.e See SI for slight deviation from typical conditions.
f Borylation run with dppe at 100°C. g Borylation run in C6H12.
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