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Summary: The C(10)-C(26} subunit of the potent immunomodulator rapamycin has been constructed via a highly
convergent approach, exploiting palladium-mediated o-bond formation to generate the sensitive triene moiety.

Wae have undertaken the total synthesis of rapamycin (1), a naturally occurring immunosuppressant of considerable
promise both in organ transplantation and in studies of intracellular signal transduction. The unique—albeit as yet
unresolved—-mechanism of action of 1 is complementary to those of cyclosporin A and FK508. From the synthetic
perspeclive, the intriguing, architecturally complex polyketide framework presents a formidabie challenge. Our analysis of
the structure genarated the key building blocks A-E (Scheme 1) via a series of disconnactions which allow for considerable
flexibility, both in the construction of 1 and uitimately in the preparation of analogs. The accompanying Letter cutlines the
elaboration and union of subtargets A and B.! Herein we describe the synthasis of the C(10)-C(26) segment of rapamycin.
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From the outset, we envisioned that the potentially sensitive E,E,E-triene unit could be introduced in regio- and
stereocontrolied fashion via palladium-mediated o-bond construction.2 Successtul C{20}-C(21) coupling of C with D would
generate 2 (Scheme {1}, an advanced intarmediate which etfectively encompasses the C(10)-C(26} segment of 1. Thus, we
initially designed enantioselective syntheses of the coupling partners D and C, envisioning that these intermediates would
derive from aldehyde 3, previously employed in our latrunculin synthetic program,3 and the weli-known meso diester 4,4
respectively.

We planned to elaborate the stannyl diene unit of D via free-radical hydrostannylation of the corresponding vinyl
acetylene {cf., Scheme IV). Recognizing that this approach would also effect Z-to-E isomerization of the A17.18.
trisubstituted olefin,5 we were able to consider both 5 and 6 (Scheme 1) as building blocks for the diene moiety.
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in the avent, both the E and Z enynes® could be selectively prepared by hydrostannylation of the known silyl diyne 77 with
the appropdiate stanny! cuprate.®
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Following transmetalation of 5 and 6 (n-BuLi, THF, -78 °C), the vinyl lithium specles were added fo aldehyde (+)-3
(Scheme V). The E isomer 5 led to the diastereomeric akcohols 86 (1.1:1 ratio) in 73% yleld. In contrast, the kthium
derivative of 8 induced significantly higher stereoselectivity, affording 96 as a 6:1 mixiure of epimers (65%). Following
chromatographic separations, the major secondary alcohols were methylated with concomitant cleavage of the trimethylsilyl
protecting groups to afford enynes (+)-108 and (+)-118 in good yield.8-19 The stage was set for formation of the E,E
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dienylstannane and, as anticipated, treatment of both the E and Z enynes 10 and 11 with n-Bu3SnH and AIBN (loluene at
reflux) gave key intermediate {+)-D (50-55% yiekd), indicating that cis-to-trans isomerization had indeed occured.

The synthesis of the C(21)-C(26) fragment C began with the desymmetrization of the meso diester 4 (Scheme V).
Enzymatic hydrolysis with a-chymotrypsin provided the halt acid in 88% yield and 94% ee* and reduction of the carboxyl
group with borane methyl sullide cleanly afforded the primary aicohol (-)-12.8 Following protection as the t-
butyl{diphenyl)silyl (BPS) ether, the ester moiety was converted to the corresponding aldehyde via DIBAL reduction and
Swern oxidation (65% yield, three steps). Exposure to 1,3-propanedithiol and boron trifiucride etherate then furnished
dithlane {+)-136 (87%). Desilylation of 13 and Swemn oxidation gave aldehyde (+)-148 in 80% yield. Without purification,
the aldehyde was subjected 1o Takal-Nozaki olefination,!? affording the desired vinyl iodide (+)-C8 in 90% yieid.
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We were now prepared to investigate the critical coupling of dienyl tin (+)-D with viny! iodide (+)-C. Unfortunately, a
variety of coupling protocols? inefficiently furnished the desired triene 2 as a mixture of E and Z isomers, accompanied by
significant quantities of the homocoupled tetraene (+)-156 (e.g., Scheme VI).
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Attributing the formation of the undesired products, at least in part, to slow insertion of palladium into the carbon-
iodine bond of C, we decided to transpose the reactive functionalities of C and D (Scheme VIl). To this end, vinyl iodide
(+)-C was metalated at -78 °C with +-Bull in diethyl ether; treatment of the resultant vinyl lithium species with freshly distilled
n-Bu3Snl provided vinyl stannane (+)-166 in 78% yield. Dienyl stannane (+)-D furnished the corresponding lodide (+)-176
quantitatively upon reaction with I2. Coupling of 16 with 17 then gave (-)-2 as the major triene (84%), accompanied by the
product of vinyl stannane homocoupling (18%) and traces of unidentified isomers of 2,12
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In summary, we have developed a convergent, stereocontrolled approach to the C(10)-C(26) triene segment of

rapamycin. Studies directed toward further refinement of the coupling process and the total syntheses of rapamycin and
congeners thereof will be reported in due course.
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