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Qubits:  The Basic Units of Quantum Computers

In a digital computer, each bit has only one of two values, 
0 or 1. 

In a quantum computer, each bit has a superposition of values.
The representation of the bit is a linear combination,

| Y ñ = c0 | 0 ñ + c1 | 1 ñ

Both c0 and c1 are complex numbers, with the restriction
á Y | Y ñ = c0*c0 + c1*c1 = 1

When a qubit state is measured, the probability that the outcome 
will be 0 is c0*c0 and the probability that the outcome will be 1 is 

c1*c1 .  But these are only probabilities. 



Quantum Logic Gates

Quantum computers rely on quantum 
logic gates, which change the states of 
the qubits in ways that are analogous to 
digital computer gates.  But there is a 
difference!  A “Not” gate on a digital 
computer changes 0 to 1 and 1 to 0.  On a 
quantum computer, a “Not” gate must be 
a matrix.  It takes the state

| Y ñ = c0 | 0 ñ + c1 | 1 ñ

and converts it into the state
| Y ñ = c0 | 1 ñ + c1 | 0 ñ  



A Quantum Computer

IBM Quantum Computer, 
photo by fine art america

Artist’s representation by Victoria Kozlova, 
in Kinesis Magazine, February 27, 2020



On the Human Scale

Coin Desk/Markets, accompanying an article by Christine Kim

This computer could not 
run as shown.  The 
operating temperature of 
IBM’s quantum computers 
is 0.015 K, about 200 times 
colder than outer space.  D-
Wave’s quantum computer 
runs at ~0.025 K.  Some 
quantum computers can 
run at room temperature:  
e.g., quantum computers 
based on the polarization 
state of photons, ion traps, 
or nitrogen vacancy centers 
in diamond.  High vacuum 
may be required.  

Qubits:  Aluminum and niobium; 
Refrigeration: brass piping plated 
with gold; 
Wiring:  copper



Richard Feynman, 1959 
Lecture, “There’s plenty 
of room at the bottom.”

1981:  Richard Feynman, “Nature isn't classical . . . if you want to make a 
simulation of nature, you'd better make it quantum mechanical, and by 
golly it's a wonderful problem, because it doesn't look so easy.”

Illustration from GoGoNano



The possibility of quantum primacy was first established by David Deutsch 
and Richard Jozsa in their 1992 paper, “Rapid solution of problems by 
quantum computation,” Proc. Roy. Soc. London, Ser. A 439, 553.  Deutsch 
had discussed quantum computing earlier in Proc. Roy. Soc. London, Ser A 
400 97 (1985). 

David Deutsch, Photo from the Financial Times, ©Robert 
Wallis/Corbis/Getty

IBM teleportation group, Photo André Berthiaume

Richard Jozsa  

Charles Bennett

William Wooters

Gilles Brassard Claude Crépeau Asher Peres



Google’s claim to “Quantum Supremacy”

Claims and counter-claims
Google:  54-bit quantum computer, random 
sampling calculation took 3 minutes, 20 seconds
Google claimed that this would take 10,000 
years on a classical computer
IBM:  No, this can be done on a classical 
computer in 2.5 days
Google:  2020 in Science, Hartree-Fock 
calculations on 12 hydrogen atoms,12 qubits; 
also cis-trans isomerization of diazene, N2H2 
Many quantum chemists:  A laptop can do that. 
Google:  2022 in Nature, quantum Monte Carlo 
calculations on N2 and C2



Quantum supremacy?  Quantum Advantage?  Quantum Primacy?

Can a quantum computer solve a problem that no classical 
digital computer can solve, in any realistic amount of time?

The requirements are not very stringent, though.
The quantum computer need not perform any useful task!

The quantum computer need not have high-quality error correction!

Why the concern about a quantum computer?  Why the tentacles?
Much computer encryption relies on large composite numbers 

that are difficult to factorize.  Shor’s algorithm permits factorization.
Potentially at risk:  Credit card transactions, bank transactions, security

“Quantum computing could break bitcoin.” 
  Coin Desk/Markets, accompanying an article by Christine Kim



What integers has it been possible to factor so far with 
quantum computers?

  • 15 was factored using Shor’s algorithm with seven spin-1/2 qubits 
manipulated with nuclear magnetic resonance methods at room 
temperature, by L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. 
Yannoni, M. H. Sherwood, and I. L. Chuang, Nature 414, 883 (2001).  

 • 21 has been reliably factored by E. MartÍn-López, A. Laing, T. 
 Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, Nature 
 Photonics 6, 773 (2012).  

 • M. Amico, Z. H. Saleem, and M. Kumph factored 15, 21, and 35 
 using the IBM Q Experience, Phys. Rev. A 100, 012305 (2019).

 • My students factored 39 using a modified version of Shor’s 
 algorithm suggested in IBM’s qiskit documentation (2020), on their 
 quantum simulator.



Is there a problem?

  RSA-768 was factored over a 
  span of 2 years by the 13-person 

 team of Thorsten Kleinjung et al.
  J. A. Smolin, G. Smith, and 
  A. Vargo, Nature 499, 163
  (2013) also factored RSA-768
   on a classical computer.   
  They observed that the reported 
  factorizations of large numbers 
  on quantum computers required 
  pre-processing on classical 
  computers. “It is not legitimate 
  for the compiler to know the
  answer to the problem being 
  solved.”  

232 decimal digits!

RSA-250 with 250 decimal digits has been factored, but not RSA-260 (Wikipedia).



The 2022 Nobel Prize in Physics

John Clauser   Anton Zeilinger        Alain Aspect

Photos from Quanta Magazine, John Clauser, Jacqueline 
Godany, and Ecole Polytechnique Université Paris-Saclay



The Bell Inequalities

These are inequalities that are obeyed by all classical objects, but 
not by all quantum mechanical observables
The implications are profound:  Violations of the Bell inequalities 
show that no “hidden variable” theory can be consistent with 
observations, unless it also allows for transmission of information 
faster than the speed of light.

J. S. Bell, Physics, Physique, Fizika 1, 195 (1964).



N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. 
Wehner, in Rev. Mod. Phys. 86, 419 (2014), have remarked 
that Bell’s theorem ‘‘arguably ranks among the most profound 
scientific discoveries ever made.’’

Violation of the Bell inequalities was first confirmed
experimentally by S. L. Freedman and J. F. Clauser, Phys. 
Rev. Lett. 29, 938 (1972), in studies of the polarization of 
entangled photons created in atomic
cascades.



The Essence of Entanglement

If two spins are totally paired up/down, designated as a/b, the 
quantum wave function is

| Y ñ = (1/2)1/2 [ | a(1) b(2) ñ - | b(1) a(2) ñ,

They are entangled. The outcomes of spin projection 
measurements would be opposite, no matter how far apart they 
are.
The wave function cannot be factored into a product of a wave 
function for System 1 and a wave function for System 2



Spooky action at a distance?
A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 
47, 777 (1935). Illustration by David Castelvecchi, 
Nature News 01/16/20

Measure the spin projection of one of the 
entangled particles along an arbitrary 
axis.  The other will immediately be found 
to have the same spin projection along 
that axis, regardless of their separation.



Does the behavior of entangled objects differ 
from the classical behavior of correlated 
objects?

Isn’t this just like Bertlmann’s socks?  

They were always mismatched.  So, if you saw 
one of Bertlmann’s feet coming in the door, you 
knew that the other sock was opposite!

J. S. Bell, “Bertlmann’s socks and the nature of 
reality,” J. Phys. Colloq. 42, (1981) provides the 
answer:  No, it is not!  
Next—how do we see that?



Suppose that we have three axes or three properties, A, B, and C, 
and each has two possible values.  Quantum mechanically, these 
might be the outcomes of measurements of the spin projections of 
a spin-1/2 particle, along each axis.  The possible outcomes of 
measurement will be labeled either + or – for each of the axes. 

Now, suppose that the objects actually “have” specific values 
for A, B, and C, and consider pairs of objects.

In that case, we could count the numbers with the characteristics 
A+B+ and call that N(A+B+).  Then

N(A+B+) = N(A+B+C+) + N(A+B+C-) 



N(A+B+) = N(A+B+C+) + N(A+B+C-)

Now add N(A+B-C+) and N(A-B+C-) on the right.
Both of these are greater than or equal to zero.

Therefore,
     N(A+B+) £    N(A+B+C+) + N(A+B-C+)   +   N(A+B+C-) + N(A-B+C-) 

 What are these numbers?



N(A+B+) = N(A+B+C+) + N(A+B+C-)

Now add N(A+B-C+) and N(A-B+C-) on the right.
Both of these are greater than or equal to zero.

Therefore,
     N(A+B+) £    N(A+B+C+) + N(A+B-C+)   +   N(A+B+C-) + N(A-B+C-) 

 What are these numbers?



N(A+B+) = N(A+B+C+) + N(A+B+C-)

Now add N(A+B-C+) and N(A-B+C-) on the right.
Both of these are greater than or equal to zero.

Therefore,
     N(A+B+) £    N(A+B+C+) + N(A+B-C+)   +   N(A+B+C-) + N(A-B+C-) 

 What are these numbers?
N(A+B+C+) + N(A+B-C+) = N(A+C+)
N(A+B+C-) + N(A-B+C-) = N(B+C-)

So 
N(A+B+) £ N(A+C+) + N(B+C-) 



Violations of the Bell inequalities are well known

Over time, various experimental loopholes have been closed 
in work with spin-paired photons.

 •  Non-coincidence loophole
 •  Loss of paired objects loophole
 •  Lack of randomness loophole
 •  Unknown means of photon communication loophole*
 •  Clumsiness loophole! 



Clever experimental test:  A. Aspect, J. Dalibard, and 
G. Roger,  Phys. Rev. Lett. 49, 1804 (1982).

Experiment with spin-correlated 
photons
To prevent any possible 
communication between 
photons, the orientations of the 
polarizers are changed while 
the photons are in flight.  No 
light signal can pass between 
the photons.



Our question:  Can violations of the Bell inequalities be seen on 
Noisy-intermediate scale quantum (NISQ) devices?

Suppose that a qubit really possesses specific spin projections 
along axes A, B, and C, but there are hidden variables.  This was 
Einstein’s belief.

There is still a problem of measurement! The spin projection of a 
qubit can only be measured along one axis at a time.

How is it possible to get around this?
Take advantage of entanglement!  



It is easy to create the entangled Bell state
| Y ñ = (1/2)1/2 [ | a(1) a(2) ñ + | b(1) b(2) ñ 
Use the short quantum computer code:

h q[0];
cx q[0], q[1]; 

We need the probabilities 
p(A+B+), p(A+C+), and p(B+C-)



Start with the state

| Y ñ = (1/2)1/2 [ | a(1) a(2) ñ + | b(1) b(2) ñ ]

The qubits remain similarly entangled along any 
measurement axis.  

For an axis rotated by q in the x, z plane, the possible spin 
projections are ħ/2 (for state r) or -ħ/2 (for state s) along the new 

axis.  We find
| Y ñ = (1/2)1/2 [ | r(1) r(2) ñ + | s(1) s(2) ñ

 



For spin-correlated qubits, measure the spin projection of one 
qubit along one axis, and measure the spin projection of another 
along a second axis.

The key observables are probabilities such as p(A+B+), p(A+C+), 
and p(B+C-)

Experience shows that the fault rates for production of qubit state 
| 1 ñ are higher than for qubit state | 0 ñ.  So, it reduces errors 
somewhat to look at p(A+B+) + p(A-B-). 



To test the Bell inequalities for spin-coupled qubits, we make spin 
projections pairwise along two of three coplanar axes A, B, and C, 
with an angle q from A to B, q¢ from B to C, and q + q¢ from A to C.

We define D by

D(q, q¢) = p(A+B+) + p(A-B-) – [ p(A+C+) + p(A-C-) + 
             p(B+C-) + p(B-C+) ] 

But there is a catch:  The spin projections can only be measured 
along z in IBM’s publicly accessible quantum computers!



How can we get around this catch? 
We use a quantum correspondence relation!
Spin “up” along any axis means that the spin projection is +h/2
along that axis.
The probability that the spin is “up” along z¢ if the spin is up along z 

is identical to 
the probability that the spin is up along z, if it is “up” along z¢, since 

á a | a¢ ñ* á a | a¢ ñ = á a¢ | a ñ* á a¢ | a ñ

So:  Rotate one spin vector that is up along z by q to a new axis z¢.  
That makes it “up” z¢. Then measure its spin projection in the z 
direction.  We will need to determine probabilities.



Observations on qubits coupled into Bell states, after rotation of one 
qubit, on IBM’s publicly accessible quantum computers

Values of p(A+B+) + p(A-B-) plotted as 
a function of the angle q between 
axes A and B.  Sets of 10 runs each 
on IBM’s burlington quantum 
computer with 1024 shots (red), 4196 
shots (cyan), and 8192 shots (blue).  
Where outliers were observed in the 
initial runs, outcomes of repeat runs 
are shown in green or magenta.
Purple curve:  Quantum mechanical 
prediction 

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, 
Phys. Chem. Chem. Phys. 23, 6370 (2021).

Raw Results



Observations on qubits coupled into Bell states, after rotation of one 
qubit, on IBM’s publicly accessible quantum computers with filtering

Values of p(A+B+) + p(A-B-) plotted as 
a function of the angle q between 
axes A and B.  Sets of 10 runs each 
on IBM’s burlington quantum 
computer with 1024 shots (red), 4196 
shots (cyan), and 8192 shots (blue).  
Where outliers were observed in the 
initial runs, outcomes of repeat runs 
are shown in green or magenta.
Purple curve:  Quantum mechanical 
prediction 

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, 
Phys. Chem. Chem. Phys. 23, 6370 (2021).

Filtered Results

Filtering by use of mitigation matrices as 
suggested in qiskit, except that the 
matrices are determined externally to this 
program and only once.



Construction of a filtering matrix for error mitigation

Prepare the basis state | 0 0 ñ, measure and examine the 
probability of each output | 0 0 ñ, | 0 1 ñ, | 1 0 ñ, and | 1 1 ñ, 
based on large numbers of runs, in our case 25 runs with 
8192 shots each.  Then prepare the basis states and repeat 
the process.  Find the matrix M that connects the vector of 
prepared states Cideal to the observed state distributions Cobs

    Cobs = M Cideal

Then given any Cobs, a good estimate of the ideal vector that 
would have produced those outcomes is
    Cest = M-1 Cobs



Interestingly, the filtering 
matrix changes relatively 
slowly in time, so it can 
be determined outside of 
a set of runs, rather than 
within them.  Results are 
shown for two runs on 
ibmq_ourense, v1.2.0, 
five days apart.



Regions of non-classical behavior

D(q, q¢) = cos2(q/2)
       – cos2[ (q + q¢) /2]
       – sin2(q¢/2) 

Positive values of 
D(q, q¢) indicate quantum 
predictions of violations 
of the Bell inequalities

Floor in the horizontal 
plane for D(q, q¢) £ 0 

q

q¢ 
¢



Results from IBM’s quantum simulator

q from A to B is fixed at 
p/3, while q¢ is variable

8192 shots per run 

10 runs each at fixed 
angles q, q¢ and q + q¢, 
giving 1000 combinations.

The error bars reach one 
standard deviation above 
and below the average 
values.

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).



With an error matrix for filtering, examine D

D = p(A+B+) + p(A-B-) – [p(A+C+) + p(A-C-)] – [p(B+C-) + p(B-C+)

Fixed angle of p/3 between 
axes A and B, variable angle 
q¢ between B and C.
D £ 0 classically.
Some angles show
classical behavior.
Others don’t!

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).

Red: ibmq_london, v1.1.3
Purple:  ibmq_16_melbourne, v2.3.1



Clauser-Horne-Shimony-Holt Inequality

This applies to correlation functions of spin projections, 
rather than probabilities, but the basis of the inequalities is 
the same.  A three-axis version of the CHSH inequality is

S = á sA sB ñ + á sA sC ñ + á sB sB ñ – á sB sC ñ £ 2

This holds classically.

The first spin projection operator refers to particle 1 and the 
second refers to particle 2.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, 
Phys. Rev. Lett. 23, 880 (1969).



Results on IBM’s publicly accessible quantum computers

Results from ibmq_london 
v1.1.3
Raw results in red
Error mitigated results in 
green
Quantum prediction:  Blue 
curve

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).

Standard deviations from 10 runs of 8192 shots, at each angle q, q¢ and q + q¢, giving 1000 combinations 



Schrödinger’s cat states on a quantum computer

From the website Seven Good ThingsD. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and 
K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).



A Schrödinger’s cat state
| Y ñ = (1/2)1/2 [ | a(1) a(2) . . . a(n) ñ 

     + | b(1) b(2) . . . b(n) ñ ] 

The qubits are all in state 0 or state 1 (a/b), 
but there is a 50/50 likelihood of each.

A 3-qubit example is the GHZ state of 
Greenberger, Horne, and Zeilinger.

Construction on a quantum computer at 
right.  Stair-step algorithm (top) and three 
harpsichord algorithms
D. Greenberger, M. Horne, and A. Zeilinger, Bell’s 
Theorem, Quantum Theory and Conceptions of the 
Universe (Kluwer Academic, Dordrecht, 1989).

N. Jansen, M. Loucks, S. Gilbert, C. Fleming-
Dittenber, J. Egbert, and K. L. C. Hunt, PCCP 
24, 7666 (2022).



Shannon entropy of measurement outcomes

S = – Sj pj log2 pj

where pj is the probability of outcome j.
Suppose that an n-qubit cat state is produced and measured without faults.
Then measurements should yield
    0 0 0 . . . 0
and   1 1 1 . . . 1
with equal probability.  

This gives S = 1, independent of the number of qubits n entangled into the 
cat state.

Shannon entropy defined by C. E. Shannon, Bell Syst. Tech. J. 27, 379, 623 (1948).



Stair-step algorithm  results 
from IBM computers 
Yorktown, Belem, Manila, 
Athens, and Santiago

Observed Shannon entropy of measurement outcomes as a 
function of the number of qubits in the cat state

N. Jansen, M. Loucks, S. Gilbert, C. Fleming-Dittenber, J. Egbert, and K. L. C. Hunt, 
Phys. Chem. Chem. Phys. 24, 7666 (2022).



Mathematical model for near-linearity of S

Assume an effective accuracy a for the production and measurement of 
the state | 0 ñ and b for the production and measurement of the state | 1 ñ.  
Then for an n-qubit cat state, the probability p(n, q) to observe q qubits 
with spin up in a measurement is given by 

 p(n, q) = (1/2) C(n, q) [ aq (1 – a)n – q + (1 – b)q bn – q ]

Now
               n

S = – S p(n, q) log2 p(n, q)
          q = 0



Shape of S in the model

Above:  S for 4 qubits

Right:  S for 2, 5, 10, and 15 qubits
Maximum when a = b = 1/2, S = n



How good is this model?

N. Jansen, M. Loucks, S. Gilbert, C. Fleming-Dittenber, J. Egbert, and K. L. C. Hunt, 
Phys. Chem. Chem. Phys. 24, 7666 (2022).

Results from 
ibmq_melbourne

Near-linearity is 
predicted!



Key observation
The slope of S(n) vs. n varies among quantum computers with identical 
quantum volumes!  It provides a more sensitive indicator of the quality of an 
NISQ device.
  Computer    dS/dn    Vc         Vg

  Melbourne   0.7315   8       8
  Yorktown    0.4739   16       8
  Belem     0.3823   32     16
  Quito     0.3106   32     16
  Manila     0.2689   32     32
  Athens    0.2204   32     32
  Santiago    0.1565   32     32



The von Neumann entropy is obtained from the density matrix r, 
which is determined by quantum state tomography, using qiskit.

SvN = – Tr [r log2r]
SvN is proportional to the thermodynamic entropy

Density Matrix
Re[r] Im[r]
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