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Qubits: The Basic Units of Quantum Computers

In a digital computer, each bit has only one of two values,
Oor1.

In a quantum computer, each bit has a superposition of values.
The representation of the bit is a linear combination,
|W)=¢cp|0)+ci|1)

Both ¢y and ¢, are complex numbers, with the restriction
<\P|\P>=CO*CO+C1*C1 — 1

When a qubit state is measured, the probability that the outcome
will be 0 is cy*cyand the probability that the outcome will be 1 is
c,"c, . But these are only probabilities.
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Quantum Logic Gates

Quantum computers rely on quantum
logic gates, which change the states of
the qubits in ways that are analogous to
digital computer gates. But there is a
difference! A “Not” gate on a digital
computer changes Oto 1and 1t0 0. On a
guantum computer, a “Not” gate must be
a matrix. It takes the state

|¥)=co|0)+cq|1)
and converts it into the state
|W)=¢co|1)+cq|0)
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IBM Quantum Computer, Artist’s representation by Victoria Kozlova,
- photo by fine art america in Kinesis Magazine, February 27, 2020
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On the Human Scale

Qubits: Aluminum and niobium;
Refrigeration: brass piping plated
with gold;

Wiring: copper

Coin Desk/Markets, accompanying an article by Christine Kim

This computer could not
run as shown. The
operating temperature of
IBM’s quantum computers
is 0.015 K, about 200 times
colder than outer space. D-
Wave’s quantum computer
runs at ~0.025 K. Some
quantum computers can
run at room temperature:
e.d., quantum computers
based on the polarization
state of photons, ion traps,
or nitrogen vacancy centers
in diamond. High vacuum
may be required.
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Richard Feynman; 1959

Lecture, “There’s plenty

of room at the bottom.”
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David Deutsch, Photo from the Financial Times, ©Robert IBM teleportation group, Photo André Berthiaume
allis/Corbis/Getty




Google’s claim to "Quantum Supremacy”

Snupto e or el NewsScientist Claims and counter-claims

News Podcasts Video Technology Space Physics Health More ¥ Shop Courses Event

, —— . Google: 54-bit quantum computer, random
It’s official: Google has achieved sampling calculation took 3 minutes, 20 seconds
quantum supremacy

00ONDOOO Google claimed that this would take 10,000
years on a classical computer

By Daniel Cossins

IBM: No, this can be done on a classical
computer in 2.5 days

Google: 2020 in Science, Hartree-Fock
calculations on 12 hydrogen atoms,12 qubits;
also cis-trans isomerization of diazene, N,H,

Many quantum chemists: A laptop can do that.

Google: 2022 in Nature, quantum Monte Carlo
calculations on N, and C,
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Quantum supremacy? Quantum Advantage? Quantum Primacy?

Can a quantum computer solve a problem that no classical
digital computer can solve, in any realistic amount of time?

The requirements are not very stringent, though.
The quantum computer need not perform any useful task!
The quantum computer need not have high-quality error correction!

Why the concern about a quantum computer? Why the tentacles?
Much computer encryption relies on large composite numbers
that are difficult to factorize. Shor’s algorithm permits factorization.
Potentially at risk: Credit card transactions, bank transactions, security
“Quantum computing could break bitcoin.”

Coin Desk/Markets, accompanying an article by Christine Kim



What integers has it been possible to factor so far with
quantum computers?

15 was factored using Shor’s algorithm with seven spin-1/2 qubits
manipulated with nuclear magnetic resonance methods at room
temperature, by L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S.
Yannoni, M. H. Sherwood, and |. L. Chuang, Nature 414, 883 (2001).

21 has been reliably factored by E. Martin-Lépez, A. Laing, T.
Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, Nature

Photonics 6, 773 (2012).

M. Amico, Z. H. Saleem, and M. Kumph factored 15, 21, and 35
using the IBM Q Experience, Phys. Rev. A 100, 012305 (2019).

My students factored 39 using a modified version of Shor’s
algorithm suggested in IBM’s qiskit documentation (2020), on their

quantum simulator.



Is there a problem?

RSA-768 232 decimal digits!

RSA-768 =12301866845301177551304949583849627207728
5356959533479219732245215172640050726365751874520
2199786469389956474942774063845925192557326303453
7315482685079170261221429134616704292143116022212
40479274737794080665351419597459856902143413

= 3347807169895689878604416984821269081770
4794983713768568912433889828837938780022876147116

52531743087737814467999489 X 367460436667995904282
4463379962795263227915816434308764267603228381573
9666511279233373417143396810270092798736308917

The base a used was

a=102903179330249325800348881837690587526457512
017856799571592111738337406378095547626571465596
555609748771550970845313421247207124155171073766
764612501767199553731974973903504534358652759946
682893508255761840004 7627481255809299529939

RSA-768 was factored over a
span of 2 years by the 13-person
team of Thorsten Kleinjung et al.
J. A. Smolin, G. Smith, and

A. Vargo, Nature 499, 163
(2013) also factored RSA-768
on a classical computer.

They observed that the reported
factorizations of large numbers
on quantum computers required
pre-processing on classical
computers. “It is not legitimate
for the compiler to know the
answer to the problem being
solved.”

RSA-250 with 250 decimal digits has been factored, but not RSA-260 (Wikipedia).



The M Nobel Prize in Physms
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John Clauser

Anton Zeilin}er\

Photos from Quanta Magazine, John Clauser, Jacqueline
Godany, and Ecole Polytechnique Université Paris-Saclay



The Bell Inequalities

These are inequalities that are obeyed by all classical objects, but
not by all quantum mechanical observables

The implications are profound: Violations of the Bell inequalities
show that no “hidden variable” theory can be consistent with
observations, unless it also allows for transmission of information
faster than the speed of light.

J. S. Bell, Physics, Physique, Fizika 1, 195 (1964).



N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, in Rev. Mod. Phys. 86, 419 (2014), have remarked
that Bell's theorem “arguably ranks among the most profound
scientific discoveries ever made.”

Violation of the Bell inequalities was first confirmed
experimentally by S. L. Freedman and J. F. Clauser, Phys.
Rev. Lett. 29, 938 (1972), in studies of the polarization of
entangled photons created in atomic

cascades.



The Essence of Entanglement

If two spins are totally paired up/down, designated as o/f, the
quantum wave function is

P = (120 Faft) B(2) ) — [ B(1) a(2) ),

They are entangled. The outcomes of spin projection
measurements would be opposite, no matter how far apart they

dalre.

The wave function cannot be factored into a product of a wave
function for System 1 and a wave function for System 2



Spooky action at a distance?

A. Einstein, B. Podolsky and N. Rosen, Phys. Rev.
47, 777 (1935). lllustration by David Castelvecchi,

Nature News 01/16/20

—_

Measure the spin projection of one of the
entangled particles along an arbitrary
axis. The other will immmediately be found
to have the same spin projection along
BN that axis, regardless of their separation.



Does the behavior of entangled objects differ
from the classical behavior of correlated

objects?
Isn’t this just like Bertimann’s socks?

They were always mismatched. So, if you saw
one of Bertimann’s feet coming in the door, you
knew that the other sock was opposite!

J. S. Bell, “Bertimann’s socks and the nature of
reality,” J. Phys. Colloq. 42, (1981) provides the
answer: No, itis notl!

Next—how do we see that?




Suppose that we have three axes or three properties, A, B, and C,
and each has two possible values. Quantum mechanically, these
might be the outcomes of measurements of the spin projections of

a spin-1/2 particle, along each axis. The possible outcomes of
measurement will be labeled either + or — for each of the axes.

Now, suppose that the objects actually "have” specific values
for A, B, and C, and consider pairs of objects.

In that case, we could count the numbers with the characteristics
A*B* and call that N(A*B*). Then

N(A*B*) = N(A*B*C*) + N(A*B*C-)



What are
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N(A*B*) = N(A*B*C*) + N(A*B*C-)

Now add N(A*B-C*) and N(A-B*C~) on the right.
Both of these are greater than or equal to zero.

N(A*B*) <

Therefore,

N(A*B*C*) + N(A*B-C*)

-+

N(A*B*C-) + N(A-B*C-)

What are these numbers?




N(A*B*) = N(A*B*C*) + N(A*B*C-)

Now add N(A*B-C*) and N(A-B*C~) on the right.
Both of these are greater than or equal to zero.

N(A*B*) <

Therefore,

N(A*B*C*) + N(A*B-C*)

-+

N(A*B*C-) + N(A-B*C-)

What are these numbers?

N(A*B*C*) + N(A*B-C*)

= N(A*C*)

N(A*B*C-) + N(A-B*C-) = N(B*C-)

So

N(A*B*) < N(A*C*) + N(B*C-)




Violations of the Bell inequalities are well known

Over time, various experimental loopholes have been closed
iIn work with spin-paired photons.

* Non-coincidence loophole

* Loss of paired objects loophole

* Lack of randomness loophole

Unknown means of photon communication loophole*
Clumsiness loophole!



Clever experimental test: A. Aspect, J. Dalibard, and
G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

Experiment with spin-correlated
photons

To prevent any possible
communication between RO DI
photons, the orientations of the

polarizers are changed while

FIG. 2. Timing experiment with optical switches.

the photons are in flight. No Each switching device (Cy, C;y) is followed by two po-
: . larizers in two different orientations. Each combina-
I|g ht S|g nal can paSS between tion is equivalent to a polarizer switched fast between

two orientations.

the photons.



Our question: Can violations of the Bell inequalities be seen on
Noisy-intermediate scale quantum (NISQ) devices?

Suppose that a qubit really possesses specific spin projections
along axes A, B, and C, but there are hidden variables. This was
Einstein’s belief.

There is still a problem of measurement! The spin projection of a
qubit can only be measured along one axis at a time.

How is it possible to get around this?
Take advantage of entanglement!



It is easy to create the entangled Bell state
| W)= (1/2)"2 [ a(1) a(2) ) + | B(1) B(2) )
Use the short quantum computer code:

h q[0];
cx q[0], q[1];

We need the probabillities
p(A*B*), p(A*C*), and p(B*C-)




Start with the state
| W)= (172)"2 | o(1) a(2) ) + [ B(1) B(2) ) ]

The qubits remain similarly entangled along any
measurement axis.

For an axis rotated by 0 in the X, z plane, the possible spin
projections are h/2 (for state r) or —h/2 (for state s) along the new
axis. We find

| W)= (172)V=2[[r(1) r(2)) + | s(1) s(2) )



For spin-correlated qubits, measure the spin projection of one
qubit along one axis, and measure the spin projection of another
along a second axis.

The key observables are probabilities such as p(A*B*), p(A*C™),
and p(B*C-)

Experience shows that the fault rates for production of qubit state
| 1) are higher than for qubit state | 0 ). So, it reduces errors
somewhat to look at p(A*B*) + p(AB").



To test the Bell inequalities for spin-coupled qubits, we make spin
projections pairwise along two of three coplanar axes A, B, and C,
with an angle 6 from Ato B, 6’ from B to C, and 6 + 6’ from A to C.

We define A by

A0, 0') = p(A*B*) + p(AB~) = [ p(A*C*) + p(A-C") +
p(B*C-) + p(B-C*) ]

But there is a catch: The spin projections can only be measured
along z in IBM'’s publicly accessible qguantum computers!



How can we get around this catch?
We use a quantum correspondence relation!

Spin “up” along any axis means that the spin projection is +h/2

along that axis.

The probability that the spin is “up” along z’ if the spin is up along z
IS Identical to

the probability that the spin is up along z, ifit is “up” along z', since

(ala’ )y (afa’)=(a’|a)" (a'|[a)

So: Rotate one spin vector that is up along z by 6 to a new axis z'.
That makes it “up” z'. Then measure its spin projection in the z
direction. We will need to determine probabilities.



Observations on qubits coupled into Bell states, after rotation of one
qubit, on IBM'’s publicly accessible quantum computers

Raw Results

O =n8 w4 3n/8 w2 5n/8 3n/4 7rn/8 =«

Angle of rotation

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt,

Phys. Chem. Chem. Phys. 23, 6370 (2021).

Values of p(A*B*) + p(A'B-) plotted as
a function of the angle 6 between
axes A and B. Sets of 10 runs each
on IBM’s burlington quantum
computer with 1024 shots (red), 4196
shots (cyan), and 8192 shots (blue).
Where outliers were observed in the
initial runs, outcomes of repeat runs
are shown in green or magenta.
Purple curve: Quantum mechanical
prediction




Observations on qubits coupled into Bell states, after rotation of one
qubit, on IBM'’s publicly accessible quantum computers with filtering

Filtered Results

/8 w4 3n/8 w2 5n/8 3n/4 Tn/8 =&

Angle of rotation

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt,

Phys. Chem. Chem. Phys. 23, 6370 (2021).

Values of p(A*B*) + p(A'B-) plotted as
a function of the angle 6 between
axes A and B. Sets of 10 runs each
on IBM’s burlington quantum
computer with 1024 shots (red), 4196
shots (cyan), and 8192 shots (blue).
Where outliers were observed in the
initial runs, outcomes of repeat runs
are shown in green or magenta.
Purple curve: Quantum mechanical
prediction

Filtering by use of mitigation matrices as
suggested in qiskit, except that the
matrices are determined externally to this
program and only once.



Construction of a filtering matrix for error mitigation

Prepare the basis state | 0 0 ), measure and examine the
orobability of each output [00),|01),|10),and |1 1),
pased on large numbers of runs, in our case 25 runs with
8192 shots each. Then prepare the basis states and repeat
the process. Find the matrix M that connects the vector of
prepared states C,,., to the observed state distributions C_, .

Cobs =M Cideal

Then given any C_,, a good estimate of the ideal vector that
would have produced those outcomes is

Cest e M_1 Cobs




Interestingly, the filtering
matrix changes relatively
slowly in time, so it can
be determined outside of
a set of runs, rather than
within them. Results are
shown for two runs on
Ibmq_ourense, v1.2.0,
five days apart.

M ! =

1.034861

—0.013127
—0.021839
—0.000105

1.032876

—0.012984
—0.020000
—0.000098

—0.029335
1.050248
0.000571
—0.021485

—0.028240
1.049636
0.000390
—0.021775

—0.034065
0.000270
1.047827
—0.014032

—0.036447
0.000263
1.050376
—0.014192

0.000811
—0.037341
—0.041142
1.077683

0.000685
—0.042541
—0.029087
1.070943




Regions of non-classical behavior

A(O, 0") = cos?(0/2)
— cos?[ (0 + 0")./2]
— sin?(0'/2)

Positive values of

A(0, 6') indicate quantum
predictions of violations
of the Bell inequalities

Floor in the horizontal
plane for A(0, 6’) <0




Results from IBM’'s quantum simulator

0 from A to B is fixed at
7t/3, while 0"is variable

8192 shots per run

10 runs each at fixed
angles 0, 0’ and 6 + 0,
giving 1000 combinations.

The error bars reach one
standard deviation above
and below the average
values.

-0.50
O n8 mn/4 3n/8 n/2 5n/8 3n/4 7Tn/8 =

Angle 8" between axes B and C

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).



With an error matrix for filtering, examine A

Fixed angle of n/3 between
axes A and B, variable angle
0’ between B and C.

A <0 classically.

Some angles show

classical behavior.

Others don't!

0.5,

0 n/8 mn/4 3n/8 w2 5m/8 3m/4 Tn/8 w Red: ibmqg_london, v1.1.3
Purple: ibmqg_16 melbourne, v2.3.1

Angle 6’ between axes B and C
A = p(A*B*) + p(A"B7) — [p(A"CY) + p(A=C7)] - [p(B*C") + p(B~C*)

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).



Clauser-Horne-Shimony-Holt Inequality

This applies to correlation functions of spin projections,
rather than probabilities, but the basis of the inequalities is
the same. A three-axis version of the CHSH inequality is

S=(op0p)t(cp0c)+t(0cgog)—(0g0c)<2
This holds classically.

The first spin projection operator refers to particle 1 and the
second refers to particle 2.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969).



Results on IBM's publicly accessible quantum computers

Standard deviations from 10 runs of 8192 shots, at each angle 6, 6’ and 6 + 6’, giving 1000 combinations

Results from ibmqg_london
v1.1.3

Raw results in red

Error mitigated results in
green

Quantum prediction: Blue
curve

T om/8 b5Sm/4 11m/8 3m/2 13m/8 Tm/4 15M/8 2T
B, C angle ¢’

D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).
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D. Z. Wang, A. Q. Gauthier, A. E. Siegmund, and From the website Seven Good Things
K. L. C. Hunt, Phys. Chem. Chem. Phys. 23, 6370 (2021).



A Schrodinger’s cat state
| W)= (172)"2[| a(1) (2) . . . a(n) )
[ B(1)B2)...BMn))»]

The qubits are all in state 0 or state 1 (a/p),
but there is a 50/50 likelihood of each.

A 3-qubit example is the GHZ state of
Greenberger, Horne, and Zeilinger.

Construction on a quantum computer at
right. Stair-step algorithm (top) and three
harpsichord algorithms

D. Greenberger, M. Horne, and A. Zeilinger, Bell’s
Theorem, Quantum Theory and Conceptions of the

a.

::..é
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b.
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states, and (b—d) three different transpiled circuits for the harpsichord
algorithm for 4-qubit cat states, generated within a single job on manila.

q 2
'Iml?

N. Jansen, M. Loucks, S. Gilbert, C. Fleming-
Dittenber, J. Egbert, and K. L. C. Hunt, PCCP
24,7666 (2022).

Universe (Kluwer Academic, Dordrecht, 1989).



Shannon entropy of measurement outcomes
=— 2 pjlog; p;

where p; is the probability of outcome j.
Suppose that an n-qubit cat state is produced and measured without faults.
Then measurements should yield
000...0
and Tl i e

with equal probability.

This gives S = 1, independent of the number of qubits n entangled into the
cat state.

Shannon entropy defined by C. E. Shannon, Bell Syst. Tech. J. 27, 379, 623 (1948).



Observed Shannon entropy of measurement outcomes as a
function of the number of qubits in the cat state

Yorktown
Belem
Manila
Athens

Stair-step algorithm results
from IBM computers
Yorktown, Belem, Manila,
Athens, and Santiago

Number of qubits n

N. Jansen, M. Loucks, S. Gilbert, C. Fleming-Dittenber, J. Egbert, and K. L. C. Hunt,
Phys. Chem. Chem. Phys. 24, 7666 (2022).



Mathematical model for near-linearity of S

Assume an effective accuracy a for the production and measurement of
the state | 0 ) and b for the production and measurement of the state | 1).

Then for an n-qubit cat state, the probability p(n, q) to observe g qubits
with spin up in a measurement is given by

p(n, q) = (1/2) C(n, q) [a% (1 —a)" "9+ (1 -D)3b"~9]
Now

S=- 2 p(n, q) log, p(n, q)
q=0



Shape of S in the model

Above: S for 4 qubits

Right: S for 2, 5, 10, and 15 qubits
Maximum whena=56=1/2,S =n




How good is this model?

-==-a /b
=== Harpsichord

Results from --- Stair-Step

ibmq_melbourne

Near-linearity is
predicted!

6 7 8 9 10 11 12 13 14 15 16
Number of qubits n

N. Jansen, M. Loucks, S. Gilbert, C. Fleming-Dittenber, J. Egbert, and K. L. C. Hunt,
Phys. Chem. Chem. Phys. 24, 7666 (2022).



Key observation

The slope of S(n) vs. n varies among quantum computers with identical
quantum volumes! It provides a more sensitive indicator of the quality of an
NISQ device.

Computer dS/dn V. Vg
Melbourne 0.7315 3 3
Yorktown 0.4739 16 38
Belem 0.3823 32 16
Quito 0.3106 32 16
Manila 0.2689 32 32
Athens 0.2204 32 32

Santiago 0.1565 32 32



The von Neumann entropy is obtained from the density matrix p,
which is determined by quantum state tomography, using qiskit.

S = — Tr [p log,p]
S, is proportional to the thermodynamic entropy

Density Matrix
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