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What is the probability of a transition when a quantum system is
subject to a time-dependent applied field?

Standard answer: P. A. M. Dirac, 1926, 1927

Solve the Schrodinger equation for the
system in a time-dependent perturbation H'(t)
by expanding the wave function as a series
in the eigenstates of the unperturbed
Hamiltonian H,.

P. A. M. Dirac, CORBIS,

[Hy + H'®)] | w()) =iho]| wy()) /ot The Daily Telegraph

Ansatz: | y(t) ) =X, c,(t) exp(—IEt/h) | ng )



Then to find the transition probability . . .
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P. A. M. Dirac, AIP Emilio Sergé:
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The coefficients c,(t) and c,(t) are related by
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Suggestion of Landau and Lifshitz: Integrate by part "”

Start from the first-order excited state coefficients c,(1)(t)

c(t) = (<) | __ dt' (ng | H'(t) | O ) expli(E, — Eq)t/M]

Quantum Mechanics

L. D. Landau E. M. Lifshitz

Niels Bohr Library and mathshistory.st-andrews.ac.uk
Archive, history.aip.org
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ak“)(t) adiabatic coefficient 7 |
b, (")(t): nonadiabatic coefficient

Important observation: Up to a phase, b,(t) = ( k'(t) | ¥(t) )
re | K'(t) ) Is the instantaneous excited state, which differs from | kg )



Two views of a transition

Dirac: For a system that started in the unperturbed ground state
| Oy ), a transition to an excited state | ky ) has occurred if | k) is
present in the wave function.

Landau and Lifshitz: For a system that started in the unperturbed
ground state, a transition to an excited state has occurred if the
wave function contains states that are not adiabatically connected
to the ground state | O, ), but that are connected instead to an
excited state | k, ) of the unperturbed system.

We have explored the suggestion by Landau and Lifshitz and its
further implications.



NGy - S

Adiabatic coefficienfs“ék“)(t)

Nonhadiabatic coefficients b,(')(t) ——>
Transition

probability:
| b(t) I}
e ; “
L ;7% r)) ; ; ‘
1 L %/ 74 ,
- Max Born | V. Fock
Unperturbed System Perturbed System

Photo of Max Born from the Nobel Foundation Archive;
Photo of Vladimir Fock from Andrzej Trautman, in terpconnect.umd.edu/~yskim/



The energy also separates into adiabatic and nonadiabatic parts!

Adiabatic adjustment of the ground state

P

E@(t) = 20 (O | H'(E) | ko ) (ko | H'(t) | O )/(Eo — Ey)
+ 2Lizo | BM(H)]? (Ex — Eo)
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A. Mandal and K. L. C. Hunt, J. Chem. Phys. 137, 164109 (2012).
Variance of the energy in terms of | b,(t)|%:
A. Mandal and K. L. C. Hunt, J. Chem. Phys. 152, 104110 (2020).

Transitions!
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- Power absorption P is determined by b, ")(t)!

P= GE(1/0t= 0 [0 | bLI(Y) 12 (Ex—Eolat 7

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 143, 134012 (2015).
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: A(r,ft)- AA(rl,_'," t)— A(r, t) + VA(r, t)
| —o(r, 1) > @u(r 1) = o(r, ) — OA(r, t)/ct
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Result: No change in E(r, t) or B(r, t)
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It gets worse . . .



Gauge transformations from zero external vector and scalar potentials to non-
zero potentials, with the applied E and B fields held at zero, produces essentially
arbitrary energy differences between the 1s and 2s states of the H atom!

H atom, 1s: (yqs | @A(1 1) | wis) = C,, f15(K) exp(—imt)
H atom, 2s: (yys | 0A(n t) | was ) = C, f25(K) exp(—imt)

K F1s(K) fas(K)

1 16/25 0

2 1/4 21/625
3 16/169 17/1250
4 1/25 465/83521
5 16/841 147/57122

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 144, 044109 (2016).
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H= 2 [p, -, A)P/(2m,) + Ve

—[d3r pr, t) OA(r, t)/ot
+ (go/2) | d3r [E A(r, t) + c2 B2(r, t)]
+ g0 | d3r [V E(r, t)] OA(r, t)/ot
Now apply Gauss'’s law to the expectation values. The
expectation values of the gauge-dependent term in the

molecular Hamiltonian and the gauge-dependent term in the
field Hamiltonian cancel!

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 144, 044109 (2016).



H = Z [poc — (g A(roc)]zl(zmoc) i VC

+ (go/2) | d3r [E 2(r, t) + c2 B(r, t)]

We have split H into an energy operator for the molecule
+ an energy operator for the field, both with gauge-
Independent expectation values.

Molecular Hamiltonian: Coulomb gauge
Field Hamiltonian: Transverse fields

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 144, 044109 (2016).



Response to a perturbing electromagnetic pulse

Cosine wave in a Gaussian envelope

t
e (t) = (-im) | (k| HE)]0) explioyt’) dt

a ((t) = (k| H'(t} 0) exp(ioyt)/(Eq — Ex)

b (1) = 1/(40xo)h (k| V [0) exp[—t* — imt — (0 + 0xg)* /41{2 [ expl(iwkot + (0 + ko) /4] + expl(w + wkp)* /4 + it(20 + wk))]

112 12 200 explt(t + iw)] [exp(w wyg) erfe[t +i(w — wyg) /21

Wi eXp(t? + iot + ® )] + i

— 1wk explt(t + iw)] — 1w
+erfct — i(w + wk)/21]},




Comparisons off resonance

Scaled transition
probabilities P, vs. time

Applied frequency o = 10
Resonant frequency o = 10

Blue:

Red: Dirac’s form, c,(t)

A. Mandal and K. L. C. Hunt, J. Chem. Phys.,
148, 194107 (2018).




Effect of a perturbing “plateau

Key: Width parameters a

pulse” with an interval in which the . o ==y |
field is constant e A

Nonadiabatic transition
probability,

No transitions occur while
the perturbation is constant.

A. Mandal and K. L. C. Hunt, J. Chem. Phys.
149, 204110 (2018).



Effect of a perturbing “plateau
pulse” with an interval in which the
field is constant

Nonadiabatic transition
probability,

Dirac’s transition probabillity
| c(t) |2

A. Mandal and K. L. C. Hunt, J. Chem. Phys.

149, 204110 (2018).
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Oscillatory pattern of transition probabilities found when a constant
perturbation is imposed suddenly and turned off suddenly

The literature often represents

these as Rabi oscillations. But
are Rabi oscillations necessary
to explain the pattern?

Dirac picture: Oscillations
occur while the field is constant

Nonadiabatic picture:
Oscillations occur due to jumps
when the field starts and stops

S. D. Jovanovski, A. Mandal, and K. L. C. Hunt, J. Chem. Phys. J. Chem. Phys. 158, 164107 (2023).
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Analytical Strategy

Initial density matrices for a two-level model system

e

Unperturbed basis

0
1
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Perturbed basis
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Time evolve & allow for dephasing
and population relaxation
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Make all comparisons in the same basis!
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Time Evolution Equations for the Density Matrix

Redfield theory for the density matrix in the secular approximation

Opcq(t)/ot = —(i/h) [A(R), p(t)]ca — Zer Reg ef Per(t)
In the basis of the perturbed eigenfunctions: \
Opri(D/ot = —E R prw + R poor Coupling to a bath!
Opoo(t)ot= ER pri — R poo
Opwo(t)ot = (i) (Ex — Eq) pro(t) = (1/T2) pro(t)

In the basis of the original, unperturbed eigenfunctions:

Opoo(t)/ot = 2 hg q(t) — R poo(t) + & R piult)
Opik(t)/ot = — 2 ho q(t) — &g R pi(t) + R pool(t)
op(t)/ot = oy q(t) — (1/T3) p(t)

aq(t)/ot = — g P(t) + ok [Pik(t) — poo(t)] — (1/T2) q(t)



Results for HCI, starting in rotational ground state
Allow for dephasing and population relaxation—no longer a pure quantum state

Results in unperturbed basis Results in perturbed basis

These results remain different when expressed in the same basis set!



In the perturbed basis, the populations relax to equilibrium:

poo(t) ={€+[1 - [ by(0) | (1 + E)] exp[-(1 + &) R]}/(1 + &)
pr(t) = {1 —[1 - by(0) | (1 + E)] exp[-(1 + &) R]}/(1 + &)

This does not happen in the unperturbed basis:

Poo,s = {2 hoi®/ Ty + & R [(1/T2)? + wyo?]}/P
Prks = {2 hg?/To + R [(1/T2)* + o o?]}B
Ps = [Nox R (1 = &) oyol/P
ds = [hok R (1 = &)/T2)1/P

B=4hy? (1/Ty) + R (1 + &) [oy? + (1/Ty)?]

S. D. Jovanovski, A. Mandal, and K. L. C. Hunt, J. Chem. Phys. 158, 164107 (2023).



What happens in the long-time limit, with coupling to a bath?

The results are not equivalent when expressed in the same basis set
by direct calculation or by change of basis.

Excited-state population as a function of the Excited-state population as a function of the
off-diagonal element of the Hamiltonian dephasing time T,



Why are these patterns observed?

In the perturbed basis,
Pt = o) =1/(1 + §) where € = exp(AE,o/kT)
and the off-diagonal elements of the density matrix vanishast — «

Taking the stationary solution of the Redfield equations in the
unperturbed basis, and then transforming to the perturbed basis,

Prk s = Nok? (Y42 + oy ¥12)1 {2 hoy?/ Ty + &g R [ (1/T,)% + oo?] }PB
+ o2 R (1 = &p) (o9 +7) (Y42 + oy y/2)711B
+ (1/4) (oo * v)? (Y22 + @y v/12)71{ 2 o /T,
+ R [ (1/T2)? + o2 ] VP

where v = (o2 + 4 hg?)"? and
B=4hy?(1/Ty) + R(1+&) [my? + (1/T2)4]



Differences between p,(t) and p(t)’
Varied T, for HCI in argon at 105 K, starting in rotational ground state
Allow for dephasing, population relaxation—no longer a pure quantum state

Dirac transition probability

Dirac transition probability

.llHA

I

Nonadiabatic transition probability

These results are compared in the same basis set, the unperturbed basis.
S. D. Jovanovski, A. Mandal, and K. L. C. Hunt, J. Chem. Phys. 158, 164107 (2023).
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o Our expectation: Probability amplitudes given by nonadiabatic
Excited 1 coefficients evolve on excited state potential surfaces, while
states those given by the adiabatic coefficient.evolve on the ground
state surface!

<" Conical intersection

Light
Flash

Ground
state

Grég Stewart/SLAC National Accelerator Laboratory, physics.org
https://phys.org/news/2018-07-ultra-high-speed-electron-camera-molecules-crossroads.html
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