

B.S. Sophomore Year – Spring Semester Lab

CEM 355 Organic Laboratory I

Description: Organic laboratory techniques. Distillation. Spectroscopy. Melting points. Recrystallization. Chromatography. Measuring physical properties.

Credit: 2 Credits (6 hours laboratory per week)

Prerequisite: Credit or concurrent enrollment in CEM 355

Experiments:

Students learn both normal scale and microscale techniques used in organic chemistry and perform a few synthetic experiments including a multi-step synthesis. They perform hands-on-experiments with ^1H NMR (300MHz) and FTIR spectroscopy. Informal lab reports are submitted for each.

1. Distillation

(simple, fractional, and fractional with packed column distillation; microscale experiment using a Hickman Hinkle apparatus; compare distillation set-up efficiencies using theoretical plate calculations; cyclohexene synthesis from cyclohexanol; fractional distillation purification of cyclohexane).

2. Thin Layer Chromatography (TLC)

(identification of a three-component mixture using standards)

3. Column Chromatography

(alumina column separation of fluorene from fluorenone; fluorene purification using microscale sublimation)

4. Extraction

(separation of a carboxylic acid from an ester by performing an acid–base extraction)

5. Recrystallization

(purification of mixture (compound, 10% impurity (a different reagent), and traces of Sudan red))

6. Diels Alder Reaction

(preparation of both of the starting materials for the Diels Alder reaction (benzoquinone and cyclopentadiene) followed by their immediate reaction; product is then exposed to UV light in a photoreactor to induce a 2+2 cycloaddition)

7. Microscale Grignard Reaction

(microscale reaction of phenyl magnesium bromide (Grignard reagent) with methyl benzoate)

8. Multistep Synthesis

(conversion of 2-chlorobenzoic acid into 2-chloro-5-nitrobenzamide in four steps)

9. Isolation of Caffeine from One Tea Bag

(create their own experimental procedure to isolate caffeine from a tea bag)

10. Azo Dye synthesis

(preparation of an X-(substituted phenylazo)-phenol by scale down of lab manual)

11. Sandmeyer Reaction

(synthesis of 4-chlorotoluene from 4-toluidine)

12. Spectroscopy

(students are trained/checked out on the FTIR and NMR (300MHz) instruments; collect IR spectra for aspirin, recrystallization product, and their extracted caffeine; obtain ^1H NMR for the following experiments: Diels Alder, 2-chloro-5-nitrobenzamide, methyl 2-chloro-5-nitrobenzoate, 4-chlorotoluene, and caffeine extraction)