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Abstract Alkylation of cysteine residues has been used
extensively for characterization of proteins and their mode
of action in biological systems, research endeavors that are
at the core of proteomics. Treatment with a simple alkylat-
ing agent such as [2-13C] bromoethylamine would result in
labeled thialysine at the ε-position. This chemical modifica-
tion of proteins would allow investigations via both 13C
NMR spectroscopy and mass spectrometry. However
[2-13C] labeled bromoethylamine is not available commer-
cially. We investigated its synthesis at acid pH with the goal
of obtaining singly labeled bromoethylamine and under-
standing the mechanistic details of the reaction. Based on
our experimental and theoretical results, bromination of
[2-13C] labeled ethanolamine in acidic conditions takes
place via exclusive attack of the nucleophile (HBr) at the
hydroxyl bearing C. Moreover, hydrogen bonding guides
the nucleophilic attack, resulting in no label scrambling of
the bromoethylamine product. Protein alkylation at cysteine
residue with the synthesized Br13CH2CH2NH2-HBr is

successful. Ab initio calculations in which CH3SH serves
as a model for the cysteine residue suggest that in gas phase
intermolecular attack by the sulfur bearing nucleophile is
favored over the intramolecular substitution by the amino
group by 15.4 kJ mol−1. Solution modeling shows that the
trend is preserved at basic pH, which is the experimental
one, but is reversed at neutral pH.
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Introduction

Proteomics, an important emerging field, concerns mainly
the protein profiling of complex biological samples, identi-
fication of affected proteins and study of protein–protein
interactions and functions [1, 2]. Characterization of pro-
teins as well as mechanistic studies are performed via tech-
niques such as in-gel derivatization and site specific amino
acid replacement [3, 4]. According to Hermanson [5], cys-
teine residues are the amino acids most frequently used for
alkylation or “tagging” due to their specificity towards nu-
cleophilic substitution [6]. Cysteine was ranked the most
nucleophilic amino acid on the nucleophilicity scale created
by Brotzel and Mayr [7]. The most common alkylating
agents are ethylenimine, iodoacetate, 2-bromoethylamine,
acrylamide, maleimide and (iodoethyl)trifluoroacetamide
[7–13]. In all the above-mentioned alkylations (except
iodoacetate), the product resembles a lysine residue,
Fig. 1, in which a methylene (1) is replaced by a sulfur
(2). Formation of γ-thiolysine (2), via alkylation of cysteine,
has been reported to lead to recovery of the protein activity
and formation of extra tryptic cut sites [14]. The modified
cysteines are used in MS-proteomics, isotopic labeling, and
chemical modification rescue [15, 16]. Of the above-
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mentioned alkylating agents, the only ones that can be
used in chemical modification rescue right after alkyl-
ation are BEA and ethylenimine. It has been reported
recently that use of BEA as alkylating agent requires
careful control of the pH—a precaution that is not nec-
essary for the more toxic ethylenimine [17]. The com-
mercially available bromoethylamine and its fully
deuterated equivalent has been used widely in MS-
proteomics [13], isotopic labeling and chemical modifi-
cation rescue [18, 19]. Treatment of proteins with labeled
2-bromoethylamine would result in 13C labeled thiolysine
(Scheme 1) at the ε-position. While this specific alkylat-
ing agent, 2-bromoethylamine seems attractive due to its
simplicity, and its synthesis from ethanolamine in basic
conditions has been reported previously [20–23], 13C
labeled bromoethylamine is not available commercially.
Moreover, there is no complete agreement over the reac-
tion mechanism in basic conditions. Two different path-
ways have been proposed, with the major difference
being the presence of aziridine as an intermediate
(Scheme 2a) [24]. The existence of aziridine would lead
to a scrambled product if one starts with a 13C labeled
ethanolamine. However, in acidic conditions (Scheme 2b)
the formation of aziridine ring should be precluded as the
amino group would be protonated and therefore unable to
displace the hydroxyl group in nucleophilic manner. At
the same time, protonation of the amino group would
enable both protonated amino and hydroxyl groups to act
as leaving groups, hydroxyl being favored.

Protein alkylation at the cysteine residue using bro-
moethylamine takes place at a slightly basic pH and two
reactions can be envisioned (Scheme 3). If the amino
group acts as a nucleophile, an intramolecular nucleo-
philic substitution might occur first, leading to scram-
bling (Scheme 3a). This pathway also raises the
question of the aziridinium ring existence as an inter-
mediate. On the other hand if the thiol group from

cysteine residue is the attacking nucleophile via an
intermolecular attack (Scheme 3b), the label will be
preserved at the initial C from bromoethylamine.

This report discusses the experimental and theoretical
results of bromination of labeled ethanolamine in acidic
conditions: no scrambling was observed due presumably
to selective attack of the nucleophile (HBr) at the C
bearing the OH functional group. Additionally, an ex-
ample alkylation of proteins using Br13CH2CH2NH2-
HBr is provided showing that the reaction is successful.
Computational investigation of the alkylation reaction of
bromoethylamine using a model system showed that
aziridine ring formation is disfavored compared with
direct attack of thiol group in gas phase and at basic
pH in solution.

Methods

Experimental

Labeled ethanolamine was purchased from Cambridge Iso-
tope Laboratories (Andover, MA) (2-13C, 99 %
HO13CH2CH2NH2-HCl). The hydrobromic acid (40 %)
was obtained from Fisher Scientific (http://www.
fishersci.com). The synthesis of labeled ethanolamine was
accomplished by addition of HBr (2 eq., 0.072 mmol) drop-
wise to the labeled HO13CH2CH2NH2-HCl (5 mg,
0.036 mmol) and refluxing overnight. In vacuo solvent
removal provided the bromoethylamine salt in an 87 %
yield.

To evaluate the application potential of bromoethylamine
as an alkylating agent, a cellular retinoic acid binding pro-
tein II R132K:R111L:L121E (CRABPII-KLE) protein that
binds to all trans-retinal as a protonated Schiff base through
a lysine at position 132 was mutated to a cysteine residue
CRABPII-C132K:R111L:L121E (CRABPII-CLE). Site-
directed mutagenesis was performed using the CRABPII-
pET17b plasmid following Stratagene’s Quikchange Kit
protocol. The primers used for the mutation were: 5′-
GACGTTGTGTGCACCTGCGTCTACGTCCGAGAG-3′
and 5′- CTCTCGGACGTAGACGCAGGTGCACACAAC
GTC- 3′: The expression of the CRABPII proteins was
carried out as previously described. The protein was isolated
and purified using previously reported protocols [25].
Alkylation of the protein was accomplished by adding
100 equivalents of bromoethylamine to 1.5 mL of a
0.5 mg/mL protein solution (pH 8.5) at 50 °C for 6 h.
The solution was then concentrated using mini filters,
followed by a buffer exchange to pH 7.5 (phosphate
buffer). The formation of a retinal-protonated Schiff
base (PSB) was monitored via UV–VIS spectroscopy
using a Cary300 BioWinUV spectrophotometer (Varian).

SH Br
NH3 S

NH3

1 3 2

Scheme 1 Alkylation of cysteine with bromoethylamine
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S
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Fig. 1 Structure of lysine (1)
and thiolysine (2)
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Computational

All calculations were done with the GAUSSIAN 09 program
package [26]. The geometry optimizations were carried out
with second order Møller-Plesset theory, MP2, [27] as well as
with B3LYP [28–30] and OLYP [31] density functionals in
conjunction with the 6-311++G** basis set [32–35].

DFT methods are popular choices over more expensive
methods such as MP2; B3LYP and OLYP have been
reported to give satisfactory results [36–43] in agreement
with those obtained with highly correlated methods, with

OLYP performing slightly better [40] than B3LYP. Howev-
er, there has been concern over underestimation of the
energetics, both activation barrier and overall reaction ener-
gy in reactions [44–48]. In order to alleviate such concerns,
computations were performed at levels of theory mentioned
above and the results compared. The trends were found to be
similar regardless of the theory level, and the results are
summarized in Tables 1 and 2. We will discuss henceforth
only results obtained at MP2 level but the energetic profiles
obtained with the DFT methods are provided in the supple-
mental information.
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The solvent, water, was incorporated in calculations as a
continuum medium characterized by a dielectric constant
via the CPCM model [49, 50]. Stationary points on the
potential energy surfaces were characterized by vibrational
analysis as minima or transition structures, having zero and
one imaginary frequency, respectively. Intrinsic reaction
coordinate (IRC) calculations were performed to confirm
that reaction paths from transition structures relaxed to the
expected ground states. The computed activation barriers
were corrected for zero point vibrational energies. Structures
were visualized using CYLview [51].

Results and discussion

Synthesis of Br13CH2CH2NH2-HBr

Br13CH2CH2NH2-HBr was prepared by refluxing two
equivalents of HBr with HO13CH2CH2NH2-HCl overnight.
13C NMR spectra of the isolated product showed, while
there was a small amount of unreacted material as evidenced
by a peak around 58 ppm belonging to the 13C-OH, the only
other peak was detected at 29.0 ppm corresponding to the
13C-Br, Fig. 2, suggesting no label (13C) scrambling. This
finding is augmented by the absence of the peaks in the
region belonging to 13C-NH3, around 42 ppm. Moreover in

the corresponding 1H NMR spectrum the splitting pattern
for the 13CH2 signal shows a coupling constant for

13C–H of
J0150.5 Hz, a value that is in the expected range. This data
suggests that the mechanism for the bromination occurs via
an intermolecular reaction, with selective attack at the OH
site, and no aziridium intermediate (Scheme 2b).

Protein alkylation with BrCH2CH2NH2-HBr

Because of the importance of bromoethylamine in chemical
modification rescue, a protein CRABPII-CLE that replaced
the lysine residue with a cysteine was prepared following
previously reported protocols. Both mutants, CRABPII-
CLE and the alkylated mutant, were investigated for pro-
tonated Schiff base formation with retinal. The thiol group
of the cysteine would be unable to form a PSB and, as
expected, only an absorption peak around 370 nm was
observed, due to free retinal (Fig. 3). The alkylation of the
thiol in the cysteine with bromoethylamine would result in
the formation of thiolysine (Fig. 1). The thiolysine formed
contained a nucleophilic amine that would lead to Schiff
base formation when reacted with retinal. Indeed, a bath-
ochromic shift was observed to around 457 nm, indicative
of PSB, suggesting that successful alkylation has been
achieved.

Theoretical calculations

The attacking species (nucleophile) was considered to be
HBr (Scheme 2), and protonation of the OH group was
thought to take place prior to the nucleophilic attack as the
reaction was run in excess acid. We did not consider an
intramolecular attack, i.e., formation of the aziridinium ion,
as in acidic conditions the amino functionality would be
protonated, NH3

+, hence it would not have the ability to
act as a nucleophile. The gas phase calculated geometries of
the relevant structures are summarized in Fig. 4. All reactant
complex conformers present strong hydrogen bonds be-
tween the HBr and either protonated amino or hydroxyl
groups, with the latter stronger by 31.4 kJ mol−1 (Table 3),
due to presumably stronger acidity of the protonated hy-
droxyl group. This large difference could be attributed to the

Table 1 Activation barrier for
bromination of ethanolamine

aEnergies are corrected with
ZPVE and expressed in kJ mol-1

bFirst values are for gas-phase
calculations, while values
in parenthesis correspond to the
solution reactions, at MP2/6-311
++G**

Starting complex Product Theory Activation barriera, b

HBr…NH3CH2CH2OH2 NH3CH2CH2Br MP2 80.3 (109.6)

B3LYP 55.0 ( 86.3)

OLYP 53.7 ( 94.5)

HBr…OH2CH2CH2NH3 OH2CH2CH2Br MP2 247.7 (264.4)

B3LYP 216.8 (234.0)

OLYP 214.4 (232.3)

Table 2 Activation barrier for alkylation of bromoethylamine

Nucleophile Theory Activation barriera, b

CH3SH MP2 186.6 (128.4)

B3LYP 151.3 ( 88.5)

OLYP 148.0 ( 93.4)

CH3S
- MP2 33.9 ( 64.9)

B3LYP 7.9 ( 36.8)

OLYP 22.1 ( 48.9)

NH2 MP2 198.3 (105.0)

B3LYP 178.0 ( 73.0)

OLYP 174.4 ( 70.3)

a Energies are corrected with ZPVE and expressed in kJ mol-1

b First values are for gas-phase calculations, while values in parenthesis
correspond to the solution reactions, at MP2/6-311++G**
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electrostatic component that would manifest in gas-phase
calculations, evidenced by the decrease of the gap between
the two complexes to 8.0 kJ mol−1 when water was included
in the model as solvent. Stabilization provided by the hy-
drogen bond does not seems to be affected by the relative

position of the two groups, hydroxyl and amino, gauche or
anti. Attack at the reaction site was modeled in a SN2
manner and we considered backside attack guided by the
interaction between the nucleophile (HBr) and the assisting
group: -NH3

+ (for attack at the CH2-OH2
+, Fig. 4, I) or -

H2N
OH

*

H2N
Br

*

Starting material

A

B

Fig. 2 13C NMR spectra of
ethanolammonium bromide (A)
and bromoethylamine (B)

A

B

Fig. 3 UV–VIS spectra of
retinal with unalkylated (A) and
with alkylated protein (B)
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I. Hydroxyl Displacementa, b
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-9.5

II. Amino Displacementa, b

1.0

247.6

-12.0

2.33 2.32

1.94
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2.06

a. Energies, kJ/mol, calculated for gas phase at MP2/6-311++G**
b. Distances, A

Fig. 4 Bromination of
ethanolamine: reactant
complexes, transition states,
and products

Table 3 Energetics of bromination of ethanolamine

Starting complex Conformera Association energyb, c Activation barrierb, c Overall energyb, c

HBr…NH3CH2CH2OH2 gauche 54.4 ( 7.1) 80.3 (109.6) −9.6

anti 54.0 ( 6.3) 78.2 ( 98.7) −10.9

HBr…OH2CH2CH2NH3 gauche 85.4 (21.3) 247.7 (264.4) −12.1

anti 86.6 (15.9) 247.3 (253.1) −12.1

a Conformers are defined with respect to the amino and hydroxyl relative positions
b Energies are corrected with ZPVE and expressed in kJ mol-1

c First values are for gas-phase calculations, while values in parenthesis correspond to the solution reactions, at MP2/6-311++G**
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OH2
+ (for attack at the CH2-NH3

+, Fig. 4, II). The transition
states present the characteristics of classic SN2 transition
states, with the leaving group and the incoming nucleophile
in a linear arrangement indicative of an sp2 hybridized-like

geometry around the C. One major difference would be in
the proximity of the nucleophile; Br was closer to the C by
0.25 Å when the leaving group was NH3

+. At the same time,
the transition state corresponding to the hydroxyl displace-
ment shows a weak hydrogen bond at 2.47 Å between the
leaving group, H2O, and NH3. The barrier for the reaction
that would lead to BEA, i.e., no scrambling, was found to be
80.3 kJ mol−1, Table 3, lower by 167.4 kJ mol−1 compared
to the pathway that would result in formation of bromoetha-
nol. It is worth mentioning that the values obtained are
similar to the calculations reported at a higher level of
theory for similar substrates [52]. The attack at the OH2

+-
bearing side is favored by the better leaving group, H2O
versus NH3 [53]. Interestingly, in both cases, at the transi-
tion state there is gauche interaction between the OH2 and
the NH3 group regardless of the starting initial conformer,

Table 4 Energetics of alkylation of bromoethylamine

Nucleophile Association
energya, b

Activation
barriera, b

Overall energya, b

CH3SH 26.4 (19.2) 186.6 (128.4) −41.8 (−112.1)

CH3S
- 63.2 (18.8) 33.9 ( 64.9) −157.7 (−164.4)

NH2 - 198.3 (105.0)

a Energies are corrected with ZPVE and expressed in kJ mol−1

b First values are for gas-phase calculations, while values in parenthesis
correspond to the solution reactions, at MP2/6-311++G**
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Fig. 5 Alkylation reaction:
reactant complexes, transition
states, and products
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anti or gauche, and we interpret this to mean that assistance
provided by the hydrogen bond takes place between HBr
and OH2

+ or NH3
+ groups and later the interaction between

the leaving group, H2O and NH3
+. These guiding hydrogen

bonds induce rotation around the C–C bond.
For the alkylation reaction (Scheme 3), we considered

that the model compound for the cysteine residue was
CH3SH. The alkylation reaction was run at basic pH08.5
and thus the nature of the nucleophile comes into question:
CH3S

− or CH3SH (if the environment around the cysteine
residue is hydrophobic). Thus, as mentioned earlier, several
pathways could be considered: intermolecular attack of ei-
ther sulfur bearing nucleophile (CH3SH or CH3S

−) or intra-
molecular attack of the amino group. The results are
summarized in Table 4.

Let us begin with a discussion of the gas phase results.
The barrier for intramolecular substitution, i.e., formation of
the aziridinium ring, is 198.3 kJ mol−1 (Fig. 5, I). Compu-
tational calculations (IRC) showed that the aziridium ring is
a transition state in the scrambling process, due to the close
proximity of the bromide, which back attacks to reform the
bromoethylamine. The corresponding barrier for attack of
CH3SH, Fig. 5, II, is lower by 11.7 kJ mol−1 suggesting that
the intermolecular pathway would be favored over the in-
tramolecular one. The transition state for the substitution
with CH3SH has the characteristics of an SN2 reaction, with
both leaving group (Br) and nucleophile (CH3SH) in vicin-
ity of the C atom that undergoes the substitution at 2.42 Å
distance each. Proton abstraction from CH3SH by the amino
group takes place at the same time with the nucleophilic
attack, presumably due to both basicity of the NH2 and close
proximity between the two groups involved. The barrier for
attack by an ionic and thus stronger nucleophile, CH3S

−, at
33.9 kJ mol−1 is a drastically lower than the barriers
corresponding to the other pathways considered.

Inclusion of water as solvent via a CPCM model affects
the pathways with respect to both energetics and geometry.
Presence of a polar protic solvent should stabilize the spe-
cies in which charge development takes place, and that is
indeed what we found with our calculations. The reaction
that involves CH3S

− as a nucleophile is favored over all the
alternatives due to the fact that it involves an ionic reactant.
However, at the transition state the charge is less separated
than in the reactants, leading to preferential stabilization of
the reactants by the solvent and thus there is an increase in
the activation barrier, from 33.9 kJ mol−1 (gas-phase) to
64.9 kJ mol−1 (solution). On the other hand the other two
reactions involve neutral species and partial charge devel-
opment takes place at the transition state, which should lead
to a decrease in the activation barrier when compared to the
gas-phase reaction, and indeed that is the case. However,
CH3SH is bulkier and the charge will be more diffuse at the
transition state compared to the intramolecular case

involving the amino group. As a result, the reduction of
the activation barrier is more pronounced for the latter case,
leading to values of 105.0 and 128.4 kJ mol−1 for NH2 and
CH3SH, respectively. These findings suggest that, in pres-
ence of water at neutral pH, intramolecular substitution is
favored over intermolecular attack by the CH3SH, a re-
versed trend compared to gas phase. However at basic pH
the sulfur nucleophile is deprotonated and thus the reaction
barrier is the lowest for intermolecular attack by CH3S

−.

Summary

We synthesized singly labeled bromoethylamine in acid con-
ditions and we modeled the reaction at MP2/6-311++G**
level in both gas phase and solution. Our results suggest that
the nucleophilic attack takes place only at the C bearing the
OH group and that hydrogen bonds play a role in guiding the
attack. Application of this alkylating agent does show modi-
fication of the protein’s UV spectrum, indicative of successful
alkylation. Modeling of the alkylation reaction suggests that
attack by the neutral thiol group is favored over intramolecular
scrambling in gas phase (which would correspond to a hydro-
phobic environment). Solution modeling points in the direc-
tion of a lowest barrier for intermolecular attack by the
thiolate, which would be the state of the sulfur-bearing nucle-
ophile in aqueous solution at the reaction pH.
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